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Abstract 

     Power generation unit loading optimisation is a practically viable tool for efficiency improvement. 
The objectives for the coal-fired power generation loading optimisation are to minimize fuel 
consumption and to minimize emissions for a given load demand.  This paper presents two models for 
this significant industrial application. Depending on the environmental regulation, either a single 
objective constrained model or a multi-objective constrained model can be chosen in practice. A 
multi-objective constraint-handling method incorporating the constraint dominance concept via Particle 
Swarm Optimisation (PSO) algorithm has been adopted for problem solving. The simulation results 
based on a coal-fired power plant demonstrates the capability, effectiveness and efficiency of using the 
proposed approach in a large scale industrial application. 
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1. Introduction 

Most power generation plants have a number of generating units. How to make the best use of the 
units directly affects a company’s business bottom line. Increased pressures from environmental 
regulations, rising fuel costs, and green house gas emissions demand power generators to be more 
efficient and effective.  

Power plant efficiency improvement activities can be classified into two categories – plant 
modification (often irreversible) and operational improvement (often reversible).    Traditional 
performance improvement activities have been often linked to plant modifications and large capital 
investment. Those performance improvement based on large capital investment are not risk free. Even 
successfully done, they do not always materialize the promised benefits.  For example, when a unit is 
upgraded to suit higher load, it will not be as efficient when load demand is low. Frequent changes in 
market strategy often require reversible changes such as operational changes rather than irreversible 
plant modifications. In contrast with plant modification, operational improvement is low-risk, low-cost 
and often with instant benefits. Power generation unit loading optimisation is a practically viable tool for 
operational improvement. 

A power generation plant usually has a number of units that work together.  Generally, a power 
generation company has a m-year (or m-month) overhaul system, that is, each time, a unit goes through a 
major overhaul in turn and every m years (or m-months) the plant completes an overhaul cycle. The unit 
which was overhauled most recently would have the highest thermal efficiency and the one close to an 
overhaul will have the lowest thermal efficiency. Units with higher thermal efficiency will consume less 
fuel and cause less environmental harm while units with lower thermal efficiency will consume more 
fuel and lead to higher environmental harm. In the normal operation range, unit thermal efficiency 
increases (or heat rate decreases) as load increases. The thermal efficiency for each unit is different 
depending on when the unit is last overhauled, what kind of problems it developed, what modifications it 
went through, and what operation mode a unit is operating under (such as mill pattern). The optimised 
loading can be achieved based on the units’ thermal efficiency and emission characteristics, that is, heat 
rate/NOx vs. load, for a given plant condition. 

The generation of electricity from fossil fuel release several contaminants, such as SO2, NOx and CO2, 
into the atmosphere.   Among these contaminants, nitrogen oxides or NOx are contributed largely by the 
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power stations and therefore are heavily regulated by the environmental management such as 
Department of Energy and Resource management (DERM) in Queensland [1].  In this research, NOx 

emission is taken as a selected index for environment conservation. The methodology can be extended to 
other emissions such as particulates or CO2. 

The unit loading optimisation problem has been studied in a branch called “Economic Load Dispatch” 
over the years. Many of the earlier models only consider one objective, that is, heat consumption (treated 
as production cost), and using traditional deterministic approaches [2-5] for solving the problem.  These 
days, society demands adequate and secure electricity not only at the cheapest possible price but also at 
minimum levels of pollution [6]. Minimizing atmospheric pollution will be one of the major challenges 
for electricity utilities. Several studies have been conducted in using stochastic metaheuristic methods 
for power generation loading optimisation application [6-8].  Zhao and Cao [7] proposed to use Particle 
Swarm Optimisation [9] algorithm and some fuzzy rules to solve the multi-objective optimisation 
problem. They proposed to use two external repositories and to use a geographically-based approach to 
find the Pareto-optimal solutions. The method for constraint-handing is not mentioned in their paper. The 
two external repositories made the computation complicated and inefficient. Basu et al. [6, 8] reported 
their approach of using evolutionary programming (genetic algorithm) and fuzzy satisfying method for 
the problem. The constraint-handling method is not clearly mentioned in the papers. The focus is put on 
the interactive fuzzy method to select solutions.  These approaches demonstrated the capabilities of using 
metaheuristics for the multi-objective load dispatch optimisation problem.   

The scope of this study is focused on the thermal operation side.  
There are two objectives in the power generation loading optimisation application. One is to 

minimize the total heat consumption (fuel consumption) and another is to minimize the total NOx 
emission.  It is desirable that the unit with higher thermal efficiency (lower heat rate) receives higher 
workload and the unit with lower thermal efficiency (higher heat rate) receives lower workload.  

This paper proposes two optimisation models in order to provide flexibility for practical operation. 
The first model (Model 1) treats emission as an additional constraint and considers the application a 
single objective optimisation problem so that to simplify the problem solving. The second model (Model 
2) treats emission as an additional objective and considers the application a multi-objective optimisation 
problem. The first model applies in the situation where emission value must be limited in the certain 
value by the environment regulation. The second model applies for the other situations. A 
multi-objective constraint-handling method incorporating with PSO-based approach is adopted in the 
study. 

The rest of the paper is organized as following: The problem modelling and formulation are presented 
in the section 2. Section 3 presents the proposed approaches for the two models. Section 4 presents the 
simulation results and discussion. Section 5 concludes the paper. 
 
2. Modelling and formulation 

Table 1 introduces the notation of the power generation loading optimisation problem. The detailed 
definitions for these terms are followed.  
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Table 1.  Notation of power generation loading optimisation 
Symbol                                              Meaning 

totalM      total power demand by the market, total workload (MW) 

minM      lowest workload (MW) 

maxM      highest workload (MW) 

 Q      total NOx emission for all units at a given load (g/m3) 

 F      total units heat consumption (MJ / h) 

 a      coefficients of the polynomial to heat rate function 

 b  
    coefficients of the polynomial to emission curve function 

 
f

 
    unit heat rate, is the heat consumption for generating per unit  electricity (KJ/KW.h) 

 g      output demand constraint function (MW) 

 h  
    heat consumption per hour to a unit at a given load (MJ / h) 

  i  
    generation unit index (subscript) 

 k   
    order of polynomial function (superscript) 

 n      number of generation unit 

 P      maximum NOx emission license limit to each unit (g/m3) 

 q      NOx emission level to a unit at a given load (g/m3) 

 r      NOx emission constraint function (g/m3) 

 x      workload allocated to a unit (MW) 

       minimum error criterion for equality constraint 

       tolerance allowed for feasibility 

 
Term Definition: 

 For a given condition, a unit’s heat rate  if is depending on the unit load   ix which can be 

expressed by a polynomial format. This function is obtained from field testing and unit modelling. 
The general expression for the heat rate function for unit  i is 

 
( 1)

( 1) 1 0
( ) ...    k k

i i k i i k i i i iif x a x a x a x a


    

 
 

 A unit’s heat consumption   ih at a given load  ix is calculated by 

 
( )   i i i ih x f x  

 
 Each unit has its own NOx emission curve  q . It is generally a linear function in the normal 

operation range, which is obtained from the field testing and unit modelling. 
 

1 0  ( )  i i i iiq x b x b 
 

 
 The total heat consumption is the sum of all units’ heat consumption, which can be expressed as 

the following 
 

1 1

( ) ( )  
n n

i i
i i

i iF h x f xx
 

  
 

 
 The total workload is the total power generated by all units at a given time. 

 

(1)

(2) 

(3) 

(4) 
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to ta l i
i

M x


 
 

 
 The NOx gas emission for each unit has to be restricted within a license limit P.  

 

   ( )          (   1, 2,...  )  i iq x P i n   
 
 The total NOx gas emission is  

 

1

( ) ( )
n

i i i
i

Q x q x


   

 
 For stable operation, the workload for each unit must be restricted within its lower and upper 

limits. This is the range where a unit load can be readily adjusted without excessive human 
intervention. For example, a unit is operating between 60% to 100% load without the need of mill 
change.  

 

min max ( 1,2,... )  i i iM x M i n  
 

        
Several constraints should be taken into consideration.  
 The first one is that the total power generated should meet the market demand at a given time. 

Considering that the data types have to be implemented in double precision, this constraint can be 
rewritten as 

1

| |    .( )
n

i total
i

g x Mx 


    

      
 The second set of constraints is the NOx gas emission. For some regions, there is an environmental 

licence limit applied in practice. The licence specifies the maximum amount of NOx gas emission 
allowed for each thermal unit.  In this case, the constraints can be written as 

 
  ( )  =  ( ) 0     (   1,2,...  ) .i i ir x q x P i n    

 
             Note:  If there is no environmental licence applied, these constraints in equation (10) can be 
disregarded.          
 The third constraint is the unit capacity constraint which can be modelled as the boundary 

constraint in the optimisation. 
      

Depending on the environment regulation, the optimisation problem can take two different models – 
the single objective constrained model (SOCM) and the multi-objective constrained model (MOCM), as 
follows. 
 
Model 1 – Single objective constrained model:  

Find the optimal load distribution so as to minimize the total heat consumption ( )F x  subject to the 

total gas emission is restricted in the licensed limit and the output demand is satisfied, as described in 
Equation (11). 
 

(5) 

(6) 

(8)

(9)

(10)

(7)
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( 1)
( 1) 1 0

min        ( ) ( ) 

s.t.          ( )  | |   0 

              ( )  ( )    0     (  = 1, 2,... )

where    ( )  ...   

     

n n

i i
i i

n

i total
i

i i

i i i

k k
i i k i i k i i i ii

F h x f x

g x M

x

x

r x q x P i n

f x a x a x a x a



 








   



  

    

 



min max

1 0  

              ( 1, 2, ... ) 

        ( )  

 

 

i i i

i i i ii

M x M i n

q x b x b

  












 


 

 
Model 2 – Multi-objective constrained model: 
     Find the optimal load distribution so as to minimize the total heat consumption ( )F x and the total 

NOx gas emission  ( )Q x subject to the output demand is satisfied, as described in Equation (12). 

 

1 1

1

1

1

( 1)
( 1) 1 0

1 0  

min        ( ) ( )

 

s.t.          ( )  | |   0

              

 

             ( )  = ( )  

where   ( )  ...   

( )   

n n

i i
i i

n

i total
i

i i

n

i i
i

k k
i i k i i k i i i i

i i i i

i

i

F h x f x

g x x M

x

Q x q x

f x a x a x a x a

q x b x b



 










   



    

 

 





min max             ( 1, 2, ... )   i i iM x M i n  















 

 
 
3. The proposed approach 

 
3.1. The PSO algorithm 

 
Particle Swarm Optimisation is a stochastic metaheuristic method for optimising numerical functions 

on the metaphor of social behaviours of flocks of birds and schools of fish [10].  A PSO algorithm 
consists of individuals, called particles that form a swarm. Each particle represents a candidate solution 
to the problem. Particles change their positions by flying in a multi-dimensional search space looking for 
the optimal position. During flight, each particle adjusts its position according to its own experience and 
the experience from its neighbouring particles, making use of the best position encountered by itself and 
the best position in the entire population (global PSO) or its local neighbourhood (local PSO).  The 
performance of each particle is measured by a predefined fitness function (objective function) which is 
problem-dependent.    

Let i-th particle in a D-dimensional search space be represented as 1 2( , ,... )i i i iDx x x x . The best 

previous position of the i-th particle in the flight history is
1 2

( , ,... )
i i i iD

pBest p p p . The position of the best 

particle of the neighbourhood is
1 2( , ,... )Di g g glBest p p p . The velocity for particle i is

1 2
( , ,... )

i i i iD
v v v v . In the 

PSO algorithm, the next position (t+1) of the particle i on the dimension d is manipulated by the 
following equations (t denote the iteration): 
 
 
 
 
 

(11)

(12)
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    1 1 2 2

( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )[ + ( )+ ( )]
id id id id id id id id

t t t t t t t tv wv c r pBest x c r lBest x   
 

       

                
( 1) ( ) ( 1)

id id id

t t tx x v  
 

 
where d = 1,2,… D, D is the search dimension; i = 1,2,…N, and N is the number of particles in the swarm; 
w is the inertia weight;  is a constriction coefficient; c1 and c2 are two positive constants, called the 

cognitive and social parameters respectively; r1 and r2 are two random numbers within the range [0, 1].  
The original PSO algorithm and its variations have no mechanism to handle constraints. In order to 

integrate constraints handling with PSO, we introduce the constraint handling methods in the following 
sections.  

 
3.2. Constraint handling 

 
Multi-objective constraint-handling method has been studied in evolutionary algorithms [11-14], in 

which a single objective optimisation problem can be transformed into a bi-objective problem where the 
first objective is to optimise the original objective function and the second is to minimize 
 

1

( ) max(0, ( ))   
m

i
i

x g x


    

 
where ( )x is a total amount of  constraint violations; m is number of constraints and ( )ig x is the i-th 
constraint function. From the above equation, if a solution satisfies all constraints, that is, ( ) 0

i
g x 

 
for 

 1, 2 , ...,i m ,  ( )x  returns a zero. Otherwise, it returns a positive number indicating the total 
amount of constraint violations. Thus, the smaller the constraint violation, the more feasible the solution 
is. The optimal value for constraint violations is 0.          

Another concept adopted in the research is the constraint dominance concept, which can be described 
as following: 
 

“A solution x(1) is said to ‘constraint-dominate’ a solution x(2), if any of the following conditions are 
true: 
 Solution x(1) is feasible and solution x(2) is not. 
 Solution x(1) and solution x(2) are both infeasible, but solution x(1) has a smaller constraint 

violation. 
 Solution x(1) and solution x(2) are feasible and solution x(1) dominates solution x(2) in the usual 

sense” [15]. 
 

Constraint dominance concept indicates that non-dominated solutions are better than dominated 
solutions. This concept will be used in comparing particles for the PSO algorithm.   

 
 

3.3.  The modified constrained PSO algorithm 
 

By adopting the multi-objective constraint-handling method, Model 1 in equation (11) can be 
transformed into: 
 

(13) 

(14) 

(15)
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1
1

  

1

1

| |  - 

max(0,  ( )) max  (0,  ( ))  

( )  

                 ( )  ( )       ( 1,  2,..

min        ( ) ( ( ), ( ))

where    ( ) ( )

( )

              

            

n

i total

i

n

i
i

i i i

n

i i
i

i

x M

x

g x r x

g x

r q x P i

F x F x x

F x f x

x

x










 



  

 











.,  )n













 

 
     Model 2 in equation (12) can be transformed into: 
 

1

1

1

1

1 

where

( ) ( )

 

s.t.         

| |  - 

min        

              ( )  =  ( )  

( ) max(0,  ( ))

      ( )    

n

i i

i

n

i total

i

i

n

i ii

F x f x

x M

x

Q x q x

x g x

g x 













  

















  

 
The equation (16) is a bi-objective unconstrained optimisation model. The equation (17) is a 

bi-objective with one constraint.   
Table 2 illustrates the proposed modified PSO algorithm. It integrates the multi-objective 

constraint-handling method and the constraint dominance concept into PSO algorithm.  
Compared with the original PSO algorithm, the modified algorithm has the following features: 
 When calculating fitness, the objective function F, constraint violation   and emission 

function Q (only for the Model 2) are calculated; 
 A particle’s personal best solution and the local best solution in its neighbourhood are 

determined by constraint-dominance concept; 
 For the Model 1, the output is one single solution. The solution has a minimal F value and 

satisfies     . 
 For the Model 2, the output contains a set of non-dominated particles.   
 

Table 2. Structure of the modified PSO algorithm for constrained optimisation problems 
01      Uniformly initialize particles  
02      Calculate fitness values F 
03*    Calculate constraint violation   
04**  Calculate emission value Q (Model 2 only)  
05      Set current locations as personal best locations for all particles 
06      Set local best location for each particle according to constraint-dominance concept 
07      Do 
08          For each particle   
09              Calculate new velocity by PSO formula 
10              Calculate new location by PSO formula  
11                 If the new location is better than the personal best location (according to constraint-dominance 
concept) 
12                    Update the personal best location with the new location 
13           End For 
14           Set local best location for each particle (according to constraint-dominance concept) 
15     While maximum iteration is reached 
16     Output results 

Note:      *   The formulas for calculating constraint violation  are different for Model 1 and Model 2. 
 **   Step 04 is for Model 2 only, if Model 1 is taken, this step is discarded 

(16) 

(17) 

Evolutionary Optimisation for Power Generation Unit Loading Application 
Lily D Li, Jiping Zhou

43



4. Simulation Results and Discussion 
 

4.1.  Unit Heat Rates and Emission Functions 
 

A local power plant has four 360MW generator units and a total 1440MW of generation capacity. 
The power plant has a four-year overhaul system. Each year, a unit goes through a major overhaul in turn 
and every four year the plant completes an overhaul cycle.  

The boundary constraints 
min  M and 

max  M for each unit are 220 (MW) and 360 (MW). The full load 

output ranges from 4 220 880 (MW)  as the minimum to 4 360 1440 (MW)    as the maximum. It 

would be better to simulate a series of output (a series of  totalM ) in order to allow the power plant to 

choose from the optimal results according to the market demand. 
The heat rate functions and the NOx emission functions for the four generator units are provided from 

a local power plant setting. The heat rate functions are in the polynomial format with the power of two. 
The NOx emission functions are linear. Table 3 lists the sample functions.  These functions can be 
modified when the units’ performance are changed.   

 
Table 3. Unit heat rate and NOx emission functions* 

Unit No. Heat Rate NO x  Emission 
1 2

1 1 1
( ) 0.0023 3.7835 9021.7f x x x   

1 1
( ) 0.0036 0.1717q x x   

2 2

2 2 2
( ) 0.0238 9.7773 9432.6f x x x   

2 2
( ) 0.0031 0.0226q x x   

3 2

3 3 3
( ) 0.0187 5.3678 10240.0f x x x   

3 3
( ) 0.0036 0.1252q x x   

4 2

4 4 4
( ) 0.0120 5.7450 9231.7f x x x   

4 4
( ) 0.0039 0.1706q x x   

*Due to commercial reasons, the functions have been slightly modified. 
 
4.2. Parameter Setting 
 

The minimum error criterion for equality constraint is selected as 1.0 03E   . The NOx license 
limits P is 1.3. PSO neighbourhood topology is set to static ring topology with the neighbour size of 2. 

PSO parameters are: 0w  ; 1 2 2;  c c  0.63 ;   
max max min0.5 ( )  ;V M M    population 

size is 40 for Model 1 and 500 for Model 2; the maximum iteration is set to 10,000 for Model 1 and 1000 
for Model 2. The feasibility tolerance allowed 1.0 08E   , that is, if a total amount of constraint 
violation      , the solution is considered feasible.   
      For each total load output   totalM , the program runs ten times with the best solution recorded. For the 

Model 1, the best solution means the feasible solution that has the lowest heat consumption. For the 
Model 2, the best solution is a set of Pareto-optimal solutions that has a small “Spacing/Spread” value 
(see Appendix for the definition of Spacing/Spread). 
 
 
4.3. Results 

 
Table 4 and Figure 1 present the simulation results to the whole range of the generation capacity. For 

each total output demand, the optimal workloads to the four generators have been found based on their 
efficiency functions as listed in Table 3.  After optimisation, the unit with higher thermal efficiency will 
receive a higher workload (such as Unit 1) while the unit with lower thermal efficiency will receive a 
lower workload (such as Unit 3). In practice, when the total output load changes, the optimal load 
allocation can be adjusted from these results.  

The results for the Model 2 should have a series of figures corresponding to the different output 
capacities. That is, for a specific output demand, the optimisation result should be a set of Pareto-optimal 
solutions. The user needs to select a specific solution by compromising both objectives.  The 
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corresponding load distribution can then be found from the selected solution.  How to compromise the 
objectives is not in the scope of this study.  

Figure 2 and Figure 3 illustrate the simulation results for 1000totalM  MW and 1200totalM   MW.  

It needs to be mentioned that the objective F (Heat Consumption) conflicts with and the objective 
 Q (NOx emission).  NOx is a product of combustion. NOx increases as combustion temperature and 

oxygen increases. While the better combustion consumes less fuel and produces better efficiency and 
lower heat rate; and better combustion generates high NOx levels as the flame would be hotter and 
oxygen would be more. 
 

Table 4.  Optimised workload distribution for Model 1 
Mtotal (MW) Unit 1 (MW) Unit 2 (MW) Unit 3 (MW) Unit 4 (MW) 
880 220.0000 220.0000 220.0000 220.000 
900 235.1297 222.3830 220.0131 222.4746 
950 273.1694 220.7023 220.0023 236.1254 
1000 326.7896 230.9750 220.0002 222.2353 
1050 359.6199 224.8249 221.3988 244.1572 
1100 359.9975 227.8653 221.2147 290.9222 
1150 359.8885 235.5493 221.1815 333.3800 
1200 359.9999 269.2535 247.5140 323.2334 
1250 359.9937 326.3954 221.1032 342.5064 
1300 358.9863 339.9221 241.0938 359.9969 
1350 359.9939 325.3112 305.7268 358.9679 
1400 358.4181 353.5454 328.0362 359.9999 
1440 360.0000 360.0000 360.0000 360.0000 

 
 

 
Figure 1.  Optimal unit loading distribution for the whole range of the generation capacity for Model 1 
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Figure 2.  Simulated Pareto-front for Model 2 ( 1000MWtotalM  ) 

 

 
Figure 3.  Simulated Pareto-front for Model 2 ( 1200MWtotalM  ) 

 
4.4. Discussion  
 

Money saving from the optimisation is calculated in order to assess the significance of the loading 
optimisation. Without adopting the loading optimisation, the total market demand is averagely allocated 
to the four generator units.  By adopting the optimisation, the total market demand is allocated to each 
generator unit based on each unit’s thermal performance. The heat consumption saving is then calculated 
for comparing the difference between the two. The formula is:  
 

4 4

1 1

 = ( ) ( )saving avg i avg i i i
i i

H x f x x f x
 

 
 

     
 
 where the  / 4avg totalx M  , the   if is the heat rate curve listed in Table 3.  

(18) 
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      The annual money saving from the optimisation can be calculated by using the calorific value and the 
price of fuel. Suppose the fuel (coal) price is cos $30t AU per ton, the calorific value  26 c MJ/kg,  
 

cos 24 360
1000
saving

saving

H
M t

c
   

  
   

 The result for the annual money saving is illustrated in Figure 4. 
 
 

 
Figure 4.  Annual money saving estimation from the optimisation  
               (Calorific value = 26 MJ / kg, fuel price = $30 /per ton) 

 
 

The curve in Figure 4 indicates that most benefits from load optimisation are made around 
1100MW-1300MW in excess of annual fuel saving of two million dollars while no gain is obtained on 
minimum and maximum loading conditions, which is logical as no options for loading at both ends. In 
reality, it is impossible to always operate the plant in such a desirable way, that is, we cannot guarantee 
all four units keep running for a whole year without stopping. Assume there is a 50% chance of possible 
loading optimisation, the benefits will be halved and fuel savings will be around one million dollars per 
year.    

In order to evaluate the efficiency of constraint-handling methods, two experiments have been 
conducted to evaluate the computation time for each individual run based on the Model 1.  The first 
experiment adopted the multi-objective constraint-handling method as proposed in this paper. The 
second experiment adopted the preserving feasibility constraint-handling method as used in our previous 
work [16]. PSO parameters for both approaches are the same. The 40 particles, 10000 maximum 
iterations have been used for both experiments. Based on ten independent runs, the minimum time, 
maximum time and the average time spent for  1000 MWtotalM  are listed in Table 5.   

 
Table 5.  Computation time spent for two constraint-handling approaches (Based on 10 independent 

runs) 
CPU time spent Method in this paper  (ms) Method in previous work [16]  (ms) 
Minimum 31 3016 
Maximum 156 4204 
Average 68.9 3925.3 

 
      

Table 5 demonstrates that the multi-objective based constraint-handling method is much faster than 
the preserving feasibility method with PSO. The main reason is that the preserving feasibility approach 
assumes all particles starting at the feasible space which require a long initialization process.  In other 
words, the evolution will not start until all particles are in the feasible space. It may be impractically too 
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long or impossible for the problems that have large search spaces and with small feasible spaces. The 
multi-objective constraint-handling approach, however, does not require the particles to be in the feasible 
space at the beginning. The initialization does not need to check if the particles satisfy all constraints 
which make the initialization easier and faster.  
     Which model is to be used in the real world? It depends on the environment regulations. If there is an 
environment licence limit regulated, either Model 1 or Model 2 will suffice. If there is no environment 
license regulated, the Model 2 can be applied.   
 
 
5. Conclusion 

 
Power generation unit efficiency will be of greater practical importance in the coming pollution 

constrained economy in terms of fuel saving and minimizing environmental harm. Based on the problem 
description, the two optimisation models - the single objective constrained model (Model 1) and the 
multi-objective constrained model (Model 2) have been presented.  The multi-objective 
constraint-handling method and the constraint dominance concept have been adopted incorporating with 
PSO algorithm for the unit loading optimisation application. 

A simulation to a four-unit coal-fired local power plant has been conducted. The simulation results 
reveal the capability, effectiveness and efficiency of applying the proposed approach in the power 
industry.   The simulation results have also demonstrated that the room for loading optimisation is 
significant.       

In order to compare the two constraint-handling methods, two experiments have been conducted to 
evaluate the computation cost. The experiment results have demonstrated that the multi-objective 
constraint-handling based approach is more efficient than the preserving feasibility constraint-handling 
approach in terms of CPU time consumed. Since the multi-objective constraint-handling method has no 
problem-dependent parameters like those applied in the penalty function based constraint-handling 
approach, it makes it easier to extend to a wide variety of applications.  

The power generation loading optimisation can take two models.  If there is an environment licence 
limit applied in practice, the Model 1 is recommended. Otherwise the Model 2 can be adopted. 
 
 
6. Appendix 
 
     Two metrics that can be used for performance evaluation in multi-objective optimisation are 
described as following. 
      Spacing (S) [17] measures how well distributed (spaced) the solutions in the  non-dominated set 
found.  The formula is: 
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where n is the number of solutions in the obtained non-dominated set, 
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and d is the mean value of the above distance measure 
1

/
n
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
  ; mf is the m-th objective 

function value; M is the number of objective functions. When the solutions are near uniformly spaced, 
the corresponding distance measure will be small. Thus, an algorithm finding a set of non-dominated 
solutions having a smaller spacing S is better.  
      Maximum Spread [18] gives a value which represents the maximum extension between the farthest 
solutions in the non-dominated set found. The formula is:  
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 A larger D value indicates better performance.  
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