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Abstract 

The ability to cluster data accurately is essential to applications such as image segmentation. 
Therefore, techniques that enhance accuracy are of keen interest. One such technique involves 
applying a quantum mechanical system model, such as that of the quantum bit, to generate 
probabilistic numerical output to be used as variable input for clustering algorithms.  This work 
demonstrates that applying a quantum bit model to data clustering algorithms can increase clustering 
accuracy, as a result of simulating superposition as well as possessing both guaranteed and 
controllable convergence properties. For accuracy assessment purposes, four quantum-modeled 
clustering algorithms for multi-band image segmentation are explored and evaluated.  The clustering 
algorithms of choice consist of quantum variants of K-Means, Fuzzy C-Means, New Weighted Fuzzy C-
Means, and the Artificial Bee Colony.  Data sets of interest include multi-band imagery, which 
subsequent to classification are analyzed and assessed for accuracy.  Results demonstrate that these 
algorithms exhibit improved accuracy, when compared to classical counterparts. Moreover, solutions 
are enhanced via introduction of the quantum state machine, which provides random initial centroid 
and variable input values to the various clustering algorithms, and quantum operators, which bring 
about convergence and maximize local search space exploration. Typically, the algorithms have shown 
to produce better solutions.  
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1. Introduction 
 

Data clustering involves grouping data set objects that share similar application dependent 
characteristics or patterns into clusters.  Clustering differs from classification, where these objects are 
assigned predefined class labels, in that object classes are not assigned predefined labels.  Cluster 
analysis can be classified as either supervised or unsupervised, with the previous requiring some degree 
of human interaction and prior knowledge of the data set, while the later enjoys increased popularity 
due to the inherent lack of prior dataset knowledge dependency.  Some typical data clustering 
algorithms that are commonly utilized are partitioning algorithms such as K-Means [23] and Fuzzy C-
Means [26], and metaheuristic swarm intelligence based algorithms such as the Artificial Bee Colony 
[27] and Particle Swarm Optimization [4]. 
 In recent years, many bodies of work have applied quantum modeled algorithms to data clustering 
[3-6,8,9,11,15,16].  Some, but not all, works have assessed clustering accuracy.   In order to be 
considered viable, quantum modeled algorithms need to provide tangible benefits, particularly in the 
form of a contribution to overall accuracy.  Hence, the purpose of this body of work, which is to 
determine the viability of quantum modeled algorithms by addressing the following two research 
questions:  Can quantum modeled algorithms effectively contribute to the overall accuracy of data 
clustering?  If so, can these algorithms be applied practically, to a common application such as image 
segmentation? 
    Since the advent of the digital age, high performance computing has been on the forefront of many 
technical endeavors.  This computational ability has provided academia, as well as private industry, 
with the ability to solve complex and/or time consuming problems with a high level of precision.  
Historically, the pinnacle of high performance computing has manifested itself technically in cutting 
edge hardware (i.e. supercomputers) as well as software (i.e. high performance algorithms such as 
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Quick Sort).  However, these traditional pinnacles have the potential to be exceeded by the emerging 
field of quantum computing and all it has to offer. Of particular interest, is exploiting the various 
quantum properties such as superposition, entanglement, coherence and interference.     

Quantum properties can be simulated via quantum system modeling algorithms, and used in 
applications that can benefit from these inherent properties.  One such application is image 
segmentation, or thresh-holding, which has proven to benefit from the diversity derived from 
simulating quantum superposition via quantum bit (qubit) modeling.  Moreover, quantum bits 
can be manipulated via quantum operators, such as a rotation gate, which consists of a unitary 
matrix and can be used to bring algorithmic convergence to fruition.  Typical fields of 
application that utilize image thresh-holding involve remote sensing, biomedical, and 
bioinformatics. Image segments can be created via data clustering algorithms, and four data 
clustering algorithms were chosen.  The clustering algorithms of choice consist of quantum 
variants of K-Means, Fuzzy C-Means, New Weighted Fuzzy C-Means, and the Artificial Bee 
Colony.  These algorithms were chosen for several reasons, the first of which is that they 
represented a diverse sample of clustering algorithms, hard and soft partitioning as well as 
metaheuristic swarm intelligence based algorithms. Second, these algorithms were chosen for 
their simplicity and adeptness at accepting output from the quantum probabilistic Turing 
machine as initial centroid input. The third and final reason that four clustering algorithms were 
deemed sufficient to draw a reasonable empirical conclusion as to the quantum models 
effectiveness as it relates to accuracy. 

The following outlines the remainder of this body of work:  In Section 2, cluster analysis and 
quantum computing are reviewed. The quantum modeled clustering algorithms are described in 
Section 3.  Experimental results and analysis are discussed in Section 4.  Conclusions are drawn 
in Section 5.      

 
 

2. Related works 
 

In recent years, quantum mechanical computing models have been applied in various 
scientific fields to a plethora of different applications, ranging from image thresh-holding, to 
classic NP hard type problems, such as the knapsack combinatorial optimization problem [2], 
and Flow shop scheduling [3].  With regard to previous methodologies associated with applying 
quantum mechanical computing models, most involve either a quantum bit representation, or 
choosing an appropriate potential well case, and subsequently solving the Schrödinger equation 
for particle motion [4].  

 
2.1. Clustering Algorithms 

 
As previously stated, data clustering involves grouping data set objects that share similar 

application dependent characteristics or patterns into clusters [17].  Clustering differs from 
classification, where these objects are assigned predefined class labels, in that object classes are 
not assigned predefined labels.  Cluster analysis can be classified as either supervised or 
unsupervised, with the previous requiring some degree of human interaction and prior 
knowledge of the data set, while the later enjoys increased popularity due the inherent lack of 
prior dataset knowledge dependency.  Clustering classification also includes hierarchal, spectral, 
and partitional clustering.  Partitional clustering can be classified as either hard or soft.  In hard 
partitional clustering, each data set object is assigned to exactly one cluster, where as in soft 
partitional clustering each data object may belong to multiple clusters, with a certain probability 
of membership to each cluster. Moreover, Common fields of application include image 
processing, pattern recognition, machine learning, bioinformatics, and data mining.   

The K-Means clustering algorithm is a hard partitioning algorithm, which assigns data 
members to the nearest calculated mean, represented by K clusters [23].  With regard to K-
Means, each cluster centroid is initialized, and each data set member is assigned to a cluster, via 
minimum Euclidean distance or some other chosen distance metric, between the member and 
the centroid.  Afterwards, each centroid is recalculated by averaging all members assigned to a 
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particular cluster, and using this new centroid value to reassign members.  The goal of K-Means 
cluster analysis is to minimize the following objective function: 

 
																			 (U, V) = ∑ ∑ ( , )                                              (1) 

 
where 	 , )  =  	 		  and represents a distance measure of choice,    is  data 
member of the cluster of cluster center , and m is any real number greater than one.  
Moreover, low time complexity and simplicity are the most prominent benefits of K-Means, 
while drawbacks consist of difficulty determining the exact number of real clusters, 
susceptibility to poor centroid initialization, sensitive to noise and outliers, and non-globular 
shape limitations.   

The Fuzzy C-Means clustering algorithm is a soft partitioning algorithm [26]. With regard to 
Fuzzy C-Means, or FCM, the following objective function is minimized: 

 
																			 (U, V) = ∑ ∑ ( , )                                          (2) 

 
where 	 , )  =  	 		  and represents a distance measure of choice,   is the 

degree of fuzzy membership for  data member 	in the cluster of cluster center , and m 
is any real number greater than one.  The algorithm begins by initializing fuzzy membership for 
each pixel randomly, and each data set member is assigned to a cluster center, via minimum 
Euclidean distance or some other chosen distance metric, between the member and the centroid.  
Afterwards, membership values are normalized and each clusters mean is calculated from these 
initial fuzzy membership values.  Once the mean for each cluster has been calculated, these 
mean values are used to recalculate fuzzy membership.  Unlike K-Means, FCM allows data 
member membership to more than one cluster, with a certain probability of membership to a 
particular cluster. However, like K-Means, fuzzy C-Means is sensitive to poor centroid 
initialization, and requires the number of clusters to be determined prior to clustering.  
Moreover, fuzzy C-Means is more computationally expensive than K-Means.   

 In contrast to the standard Fuzzy C-Means algorithm described in the previous section, the 
New Weighted Fuzzy C-Means algorithm [12] minimizes the following objective function: 

 
																	 (U, M) = ∑ ∑ ( , )                                       (3) 

 
where 	 , )  =  	 		  and represents a distance measure of choice,   is the 
degree of fuzzy membership for  data member 	in the cluster,  is the unsupervised 
weighted mean, and m is any real number greater than one.   Moreover, the weighted mean   
is represented by equation (4): 

	 ∑
‖ 	 ‖		 	 		

‖ 	 ‖		 	
                                             (4) 

 
In addition, with the introduction of Lagrange Multiplier methods, a reformulated objective 
function can be realized as equation (5): 

 
 (U, ξ) = ∑ ∑ ( , ) + ∑ ∑ 1                       (5) 

 
where  with j = 1, …, n  represents the Lagrange multipliers for n constraints.  As a result of 
differentiating  this new objective function, equations (6) and (7) are obtained: 

 

∑ ‖ 	 ‖		 ∙ 	 ∑ /
                             (6) 

 

		 	 / 	 		 ∙ 	 ∑
/

                            (7) 
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Just as in the standard Fuzzy C-Means algorithm previously described, the New Weighted 
Fuzzy C-Means (NW-FCM) algorithm begins by initializing fuzzy membership for each pixel 
randomly, and each data set member is assigned to a cluster center, via minimum Euclidean 
distance or some other chosen distance metric, between the member and the centroid.  
Afterwards, membership values are normalized and the iterative process begins.  First, each 
clusters mean is calculated from these initial fuzzy membership values.  This is followed by 
calculating the weighted means , and once the mean value is obtained it is used to update the 
Lagrange multiplier  , which in turn is used to update fuzzy membership. Then, the process is 
repeated until algorithmic convergence criteria are met. While NW-FCM is much more 
computationally expensive than FCM, it exhibits greater stability and accuracy in general. 

The Artificial Bee Colony (ABC) Algorithm as defined by Karaboga in 2005 [27], is a 
metaheuristic swarm intelligence based algorithm applied to optimization problems.    The 
algorithm simulates the foraging behavior of honey bees, in which the population utilizes a 
multidimensional search space to select optimal food (nectar) sources.  In the process, 
information is exchanged between some population individuals (employed and onlooker bees) 
and combined with information already possessed by each individual,   and positions are 
adjusted accordingly.   Moreover, other individuals (scouts) choose food sources randomly.  
Upon discovering a new more plentiful food source, the position of the new source is 
memorized and the previous source is forgotten.  Through the activities of these three categories 
of artificial honey bees, a good balance of exploration and exploitation is achieved. 

With regard to ABC, every food source is investigated and employed by exactly one 
employed bee.  The following Equation (8) is utilized to generate initial food sources 

 
                                	 	 0,1 	                                     (8) 

 
where  i = 1, …, SN  with SN representing the number of food sources,  j = 1, …, D with D 
representing the number of parameters to be optimized, and   and  representing the 
minimum and maximum initial boundary values of parameter j.   

Each employed bee investigates and evaluates the amount or quality of a new food source via 
Equation (9): 

                                         	 	 	 	 	                                                (9) 
 

where 	   is the generated new food source,    represents a random number between -1 and 1, 
and  is a neighboring food source.  Once an employed bee’s food source has been depleted, 
determined via a trial limit condition, the employed bee becomes a scout bee.  The trial limit 
condition involves a specified number of attempts allowed to improve a food source, and if 
exceeded the source is abandoned.  Food sources are selected by onlooker bees probabilistically 
according to Equation (10): 
 

	
∑

                                                     (10) 

 
where   is the fitness value associated with the  food source.  In order to apply the 
ABC algorithm to data clustering [14], the optimization parameters of each food must serve as 
cluster centroids, and evaluated by some cluster validity index based objective function for 
fitness value.  Typically, the fitness value is the reciprocal of the objective function value.  
Moreover, optimizing parameters is crucial to the performance of ABC [21,22].  

In order to evaluate the quality of a particular solution, a cluster validity index must be 
utilized.  From this index value, the associated “fitness” or cluster quality can be estimated.  
Within this body of work, for the clustering algorithms in the previous sections, two different 
cluster validity indices will be utilized.  

The first cluster validity index is the Davies-Bouldin (DB) Index method [7], or DB Index. 
The DB index takes into consideration both the inter-cluster scatter as well as the intra-cluster 
distance as follows: 
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	 	≡ 	 	∑                                                (11) 

 
where 

	≡ 	
	 		                                                      (12) 

 
and 

	 	 	∑ 	 	 	                                           (13) 

 
where  is the centroid of the ith cluster,  is a pixel in the ith cluster, and  is the number of 
pixels in the ith cluster, and q is any positive real number. 

 

	 	 	∑ 	 	                                          (14) 
 

where  is the kth  component of the n-dimensional vector , which is the centroid of the ith 

cluster, and p is any positive real number.  Using the DB Index, a fitness function can be 
formulated: 

	
	

                                                         (15) 

 
The second cluster validity index of interest is specifically for the fuzzy clustering 

algorithms, FCM and NW-FCM.  It is known as the Xie and Beni’s (XB) Index method [17], or 
XB Index.  The XB index takes into consideration both the inter-cluster scatter as well as the 
intra-cluster distance as follows: 

	
∑ ∑ 	 		

	 	 		
                                            (16) 

 
where  is the fuzzy weight or membership of pixel  in the ith cluster,  is the fuzzy cluster 
centroid of the ith cluster,   is the fuzzy cluster centroid of the jth cluster ,   is the number of 
pixels in the image, and c is the total number of clusters.  Using the XB Index, a fitness function 
can be formulated: 

	
	

                                                         (17) 

 
2.2. Quantum computing 

 
The model of choice for this work is that of the qubit, in the form of a string of qubits. This 

model was chosen specifically for the diversity obtained from representing the quantum 
mechanical superposition of states.  Previous works have applied this model to various 
algorithms, such as Genetic Algorithms [5,9], evolutionary algorithms [6], and Particle Swarm 
Optimization [11].  Other bodies of work have also applied the qubit model to partitioning 
algorithms, such as K-Means [5,15], as well as Fuzzy C-Means [16,29].  This body of work will 
apply the qubit model not only to K-Means and Fuzzy C-Means, but also to New Weighted 
Fuzzy C-Means [12] and the Artificial Bee Colony [14,30].   These particular clustering 
algorithms were chosen both for their simplicity, and their adeptness for accepting randomly 
generated quantum centroid values as input.  

To understand how a qubit works, one needs to acquire a fundamental understanding of 
quantum state systems. The basis of quantum physics is derived from the Schrodinger equation 
for matter waves [28], which in time-dependent general form can be expressed as 

 

Ѱ 	 Ѱ                                                              (18) 

 
where Ѱ represents the wave function of a particle, and  is the Hamiltonian, which represents 
the sum of the kinetic and potential energies,  is the imaginary component, and   is the Planck 
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constant.  This equation completely describes the evolution of a matter wave associated with a 
given particle over time.  Moreover, the Hamiltonian is equivalent to    

 
	 	                                                                 (19) 

 
where   and  are the kinetic and potential energies respectively.  Also, for a single particle in 
an electric field the kinetic energy can be represented as 

 

	 	 	                                                                (20) 

 
where  represents the three dimensional gradient such that 

 

	 	 	 	 	 	 	 	                                                        (21) 

 
Therefore, the total energy represented by the Hamiltonian is equivalent to 

 

Ĥ 	 	 	                                                             (22) 

 
and substituting this back into the time-dependent Schrodinger equation gives 

 

Ѱ , 	 	 , Ѱ ,                                           (23) 

 
Also, particles have quantum spin states associated with them, which represent intrinsic 

angular momentum, the value of which varies according to particle classification.  For a fermion, 
such as an electron, the spin state is   and corresponds to a vector quantity that represents the 
magnitude of the intrinsic angular momentum of the particle.  Two spin states are possible for a 
fermion, spin up and spin down.  In a two state qubit system, spin up and spin down are 
analogous to classical binary bit states 0 and 1 respectively.  For visualization purposes, the 
spin states of a fermion can be represented by a Bloch sphere.  

In quantum mechanics, a superposition or linear combination of states can be can be 
represented in Dirac notation [1] such that 

 

                |y ñ = α |0ñ + β |1ñ                                                        (24) 

 

where y represents an arbitrary state vector in Hilbert space, α and β represent probability 

amplitude coefficients, and |0ñ and |1ñ represent basis states.  These basis states correspond to 

spin up and spin down respectively.  The state vector in normalized form can be represented as  
 

	y	|	y	  = 1                                                               (25) 
 

or equivalently 

             |α|2 + |β|2 = 1                                                             (26) 

 

where |α|2 and |β|2 are the probabilities of quantum particle measurement, yielding a particular 

state. Moreover, due to the superposition of quantum states, the particle may be in either a 
single state or multiple states simultaneously. 

These probability amplitudes are complex numbers, and in matrix form can represent a qubit 
 

																																												 	 	                                                             (27) 
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Moreover, a series of qubits can form a string such that 
 

																													 	 	
…
… 	 	                                                   (28) 

 
In addition, states |0ñ		and |1ñ can be represented in bit form as  

 

|0ñ	 	    1
0
	                                                       (29) 

 

|1ñ	 	    0
1
	                                                       (30) 

 
Likewise, the qubit string in equation (11) can be expressed in the same notation [10].  For 
instance, the following eight bit string 

11010010 
 

 can be represented as  
0
1
	  · 0

1
	  · 1

0
	  · 0

1
	  · 1

0
	  · 1

0
	  ·  0

1
	  · 1

0
	                            (31) 

 
or in tensor product form 

 
|1ñ⊗ 	|1ñ⊗ 	|0ñ	 ⊗ 		|1ñ	 ⊗ 	|0ñ	 ⊗ 		|0ñ⊗ 	|1ñ⊗ 	|0ñ			                         (32) 

 
In addition to the qubit model, another quantum model that has been utilized in other bodies 

of work and applied to particle swarm optimization [4] is the quantum potential well model.  
The concept involves a particle being trapped in a quantum potential well, bounded by the sides 
of the well, while being attracted to the center.  The Schrödinger equation can be solved for this 
special case, with known solutions.  For particle swarm optimization, for each particle the 
Schrödinger equation can be solved iteratively for position, with algorithmic convergence being 
achieved once the particle reaches the center of the well.  There are many potential well 
distributions to choose from [28], a few of which will be mentioned here, the simplest of which 
is the delta potential well: 

 
	                                                        (33) 

 

where  is negative number and  represents the Dirac delta function.  Another potential well 
distribution is the square potential well: 
 

	 0 , │ │	 		 /2
, otherwise

                                             (34) 

 

where W is the width of the well, and  represents the energy threshold required to avoid being 
bound with the walls of the well, between the points r = ± W/2.   Finally, the last potential well 
distribution that will be noted is the harmonic oscillator potential: 

 

	                                                           (35) 
 

where k  is a constant that determines the strength of the well.  
Given the choice to evaluate either the qubit or the potential well model, the model of choice 

for this work is the qubit model.  With this in mind, the goal of this body of work is to ascertain 
the effectiveness of the quantum bit model, with as few additional enhancements as possible. 
Thereby, revealing the true essence of the models potential.  With that being stated, the 
quantum bit model requires only a quantum rotation gate, which is used to rotate each qubit to 
the desired state, in order to bring convergence to fruition. In addition to the gate, for purposes 
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of enhancing diversity and escaping the local optimum, two quantum variants of classical 
genetic operators, crossover and mutation are applied. 

 
 

3. Quantum Modeled Clustering Algorithms 
 

In order to simulate the quantum mechanical property of superposition of states, a probabilistic 
Turing machine must be utilized.    Each of the quantum modeled algorithms that follows will use the 
output of this state machine as input to the clustering algorithms described previously.  Moreover, the 
probability of obtaining a particular outcome can be controlled by operating on the associated qubits 
directly with a quantum rotation gate.  In order to implement the quantum state machine, for each 
algorithmic iteration a series of black box quantum “oracle” objects are utilized, each of which in this 
context poses a solution. The qubit string representation previously described represents a 
superposition of states, and each oracle possesses n qubit strings with m qubits per string.  Since m 
represents the string length in qubits, the value of m for each string is chosen according to the estimated 
optimal centroid initial value. The total length of each qubit string is the product of m, the number of 
bands associated with the image being segmented, and the number of clusters chosen beforehand.  
Once the desired centroid value is determined, the number of qubits is specified accordingly, along 
with the appropriate number of clusters for the dataset of interest.  Moreover, qubit strings may be 
applied to any random variable, not just cluster centers.  Simply apply qubit string values to all desired 
random variables, obtain some measure of fitness via the inverse of some appropriate cluster validity 
index, determine the fittest solution thus far, and use the rotation gate and the state information of the 
best solution to converge the output of the state machine to that of the best solution.   The quantum 
rotation gate is a unitary matrix operator, and can be formulated as follows: 

 

G = 	 	
	 		

                                                          (36) 

 

The angle of rotation q  is determined via a lookup table based upon the variable angle distance method 

[6]. The rotation gate is only one of a variety of gates that can be applied to the probability amplitude 
coefficients of each qubit [9]. 
    By applying the rotation gate, the probability that the output values will reflect the state of the best 
current solution will increase as the qubit state values approach that of the best solution, the rate of 
which is determined according to the angle of the rotation gate operating on the qubits following each 
iteration.  More specifically, to control the algorithmic rate of convergence, for each iteration, as stated 
before a series of black box quantum “oracles” are utilized.  Each oracle poses a solution, and consists 
of an instantiated object that generates its own input.   This input is generated by observing the 
probability amplitude values associated with each of the various self-contained qubit strings, thereby 
collapsing the superposition of states of each qubit to a single state, and encoding each collapsed state 
into a binary string.   
    During the Initialize Q(t) stage, the oracle population is initialized, and upon instantiation of each 

oracle object, each probability amplitude in each qubit string is initialized to  
√

 .  With this initial 

value, the probability of being observed in either binary state is equivalent. This binary encoding is 
followed by decoding these binary values into decimal values, and then providing these decoded values 
as input to the various clustering algorithms, as either centroids or random parameters.   The processes 
of state observation, binary encoding and decimal decoding occur during the Make P(t) stage.  Once 
the clustering algorithm of interest has received these values as input from the oracle, data partitioning 
will occur.   Afterwards, the cluster fitness is evaluated during the Evaluate P(t) stage, via the inverse 
of some appropriate cluster validity index, and the fitness value is stored in the oracle.  Afterwards, 
Store B(t) is called, the fitness of the solution is compared to the stored best solution, and the better one 
is retained. Following evaluation, two additional quantum variants of classical genetic operators are 
employed.  The first is a quantum two-point crossover operator [9], which after each iteration, 
according to a specified probability selects two individuals randomly and applies two-point crossover 
to subsequent generations at random crossover points.  The second operator is quantum mutation 
inversion [9], and this operator randomly selects two individuals from the population and inverts the 
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probability coefficients α and β of a randomly chosen qubit.  The idea behind applying these quantum 
genetic operators is to attempt to further increase diversity and discover a better solution. 
    This body of work will focus upon applying the qubit model to the K-Means, Fuzzy C-Means, New 
Weighted Fuzzy C-Means, and Artificial Bee Colony clustering algorithms.  These particular clustering 
algorithms were chosen both for their simplicity, and their adeptness for accepting randomly generated 
quantum centroid values as input.  As an alternative, rather than assigning quantum random 8 bit values 
as centroids, pixel values may be assigned as centroids, while assigning the quantum values to the pixel 
array as random index values.   Furthermore, by assessing the quantum model for all four of these 
clustering algorithms individually, and then comparing the results, a more comprehensive overall 
assessment is possible.  
 
3.1. Quantum K-Means Algorithm 
 
    The Quantum K-Means (QKM) algorithm begins by initializing a population of quantum oracles, 
and then a call is made to Make P(t).  Following Make P(t), the decoded decimal values are provided as 
initial centroid input to K-Means, and hard partitioning will then ensue until a stopping criterion has 
been determined.  Afterwards, the cluster fitness is evaluated, via the Davies-Bouldin (DB) Index 
method [7], and the fitness value is stored in the oracle.  The fitness function utilized in QKM is in 
noted in equation (15).       
    Afterwards, the fitness of the oracle is compared to the stored best solution as of yet, and the oracle 
that posses a superior fitness value is stored as the new best solution.  In order to guide the current 
solution toward the best stored solution, and hence bring convergence to fruition, subsequent to oracle 
population fitness evaluation, the quantum rotation gate in equation (36) is applied to the probability 
amplitudes α and β respectively for each qubit in each string.  Following quantum gate rotation, 
quantum crossover and mutation operators are applied to individuals chosen randomly. The previously 
described process continues for the specified number of iterations.    
 

Step 1: Initialize Q(t) – (population initialization)  
Step 2: Make P(t) – (Observe, encode, decode)  
Step 3: K-Means Clustering  
Step 4: Evaluate P(t) – (XB Index)  
Step 5: Store B(t) – (Store best solution)  
Step 6: Repeat Steps 3-5 for the entire population  
Step 7: Quantum Rotation Gate  
Step 8: Quantum Crossover  
Step 9: Quantum Mutation Inversion  
Step 10: Make P(t) – (Observe, encode, decode)  
Step 11: Repeat Steps 3-10 for every iteration 

 
3.2. Quantum Fuzzy C-Means Algorithm 
 
    The Quantum Fuzzy C-Means (QFCM) algorithm begins by initializing a population of quantum 
oracles, and then a call is made to Make P(t).  Following Make P(t), the decoded decimal values are 
utilized as initial membership weights and normalized.  Following membership normalization, soft 
partitioning will then ensue until a stopping criterion has been determined.  Once soft partitioning has 
completed, solution fitness is evaluated, via the Xie and Beni’s (XB) Index method [17], and the fitness 
value is stored.  The fitness function utilized in QFCM is noted in equation (17). 

Afterwards, the fitness of the oracle is compared to the stored best solution as of yet, and the oracle 
that possesses a superior fitness value is stored as the new best solution.  In order to guide the current 
solution toward the best stored solution, and hence bring convergence to fruition, subsequent to oracle 
population fitness evaluation, the quantum rotation gate in equation (36) is applied to the probability 
amplitudes α and β respectively for each qubit in each string.  Following quantum gate rotation, 
quantum crossover and mutation operators are applied to individuals chosen randomly. The previously 
described process continues for the specified number of iterations.    
 
The following describes the steps of the QFCM algorithm: 
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Step 1: Initialize Q(t) – (population initialization)  
Step 2: Make P(t) – (Observe, encode, decode)  
Step 3: Fuzzy C-Means Clustering  
Step 4: Evaluate P(t) – (XB Index)  
Step 5: Store B(t) – (Store best solution)  
Step 6: Repeat Steps 3-5 for the entire population  
Step 7: Quantum Rotation Gate  
Step 8: Quantum Crossover  
Step 9: Quantum Mutation Inversion  
Step 10: Make P(t) – (Observe, encode, decode)  
Step 11: Repeat Steps 3-10 for every iteration 

 
3.3. Quantum New Weighted Fuzzy C-Means Algorithm 
 
    The Quantum New Weighted Fuzzy C-Means (QNW-FCM) algorithm begins by initializing a 
population of quantum oracles, and then a call is made to Make P(t).  Following Make P(t), the 
decoded decimal values are utilized as initial membership weights and normalized.  Following 
membership normalization, soft partitioning will then ensue until a stopping criterion has been 
determined.  Once soft partitioning has completed, solution fitness is evaluated, via the Xie and Beni’s 
(XB) Index method [17], and the fitness value is stored.  The fitness function utilized in QNW-FCM is 
noted in equation (17). 
    Afterwards, the fitness of the oracle is compared to the stored best solution as of yet, and the oracle 
that possesses a superior fitness value is stored as the new best solution.  In order to guide the current 
solution toward the best stored solution, and hence bring convergence to fruition, subsequent to oracle 
population fitness evaluation, the quantum rotation gate in equation (36) is applied to the probability 
amplitudes α and β respectively for each qubit in each string.  Following quantum gate rotation, 
quantum crossover and mutation operators are applied to individuals chosen randomly. The previously 
described process continues for the specified number of iterations.   
 
The following describes the steps of the QNW-FCM algorithm: 
 

Step 1: Initialize Q(t) – (population initialization)  
Step 2: Make P(t) – (Observe, encode, decode)  
Step 3: New Weighted Fuzzy C-Means Clustering  
Step 4: Evaluate P(t) – (XB Index)  
Step 5: Store B(t) – (Store best solution)  
Step 6: Repeat Steps 3-5 for the entire population  
Step 7: Quantum Rotation Gate  
Step 8: Quantum Crossover  
Step 9: Quantum Mutation Inversion  
Step 10: Make P(t) – (Observe, encode, decode)  
Step 11: Repeat Steps 3-10 for every iteration 

 
3.4. Quantum Artificial Bee Colony Algorithm 
 
    The Quantum Artificial Bee Colony (QABC) algorithm begins by initializing a population of 
quantum oracles, and then a call is made to Make P(t).  Following Make P(t), the decoded decimal 
values are utilized as initial food sources and random parameter values.  The ABC algorithm is then 
executed, with food source fitness being evaluated during employed and onlooker bee phases once 
each cycle , via the Davies-Bouldin (DB) Index method [7], and the fitness value is stored in the oracle.  
The fitness function utilized in QABC is in noted in equation (15).   
    Afterwards, the fitness of the oracle is compared to the stored best solution as of yet, and the oracle 
that posses a superior fitness value is stored as the new best solution.  In order to guide the current 
solution toward the best stored solution, and hence bring convergence to fruition, subsequent to oracle 
population fitness evaluation, the quantum rotation gate in equation (36) is applied to the probability 
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amplitudes α and β respectively for each qubit in each string.  Following quantum gate rotation, 
quantum crossover and mutation operators are applied to individuals chosen randomly. The previously 
described process continues for the specified number of iterations.    
 
The following describes the steps of the QABC algorithm:  
 

Step 1: Initialize Q(t) – (population initialization)  
Step 2: Make P(t) – (Observe, encode, decode)  
Step 3: Artificial Bee Colony Clustering  
Step 4: Evaluate P(t) – (DB Index)  
Step 5: Store B(t) – (Store best solution)  
Step 6: Quantum Rotation Gate – (unitary matrix)  
Step 7: Quantum Crossover - (2 point, swap qubits)  
Step 8: Quantum Mutation Inversion – (flip α and β)  
Step 9: Make P(t)– (Observe, encode, decode)  
Step 10: Repeat Steps 3-9 for every iteration 

 
 
4. Experimental results and analysis 
 
The four proposed algorithms were implemented in java and conducted 30 times each on a satellite 
image, a hazy landscape image, a raptor jet fighter image, an image of the earth from the surface of the 
moon, and an image of a desert arch and a tree.  In addition, QKM and KM only were conducted on the 
Iris data set from the UCI Machine Learning Repository.  Moreover, due to the fact that the fitness 
value obtained via the Davies Bouldin index is higher for Iris solutions that possess less than the 
optimal number of clusters, parameters were controlled according to data set properties for ease of 
assessment purposes. For the satellite and hazy landscape images, overall accuracy assessments were 
performed via ground truth, with the best segmentation results displayed in Figures 1 and 2, and the 
best, worst and mean segmentation accuracy listed in Tables 1 – 4 below.  The raptor, the earth from 
the moon, and the desert arch with a tree images were accessed via visual inspection, with the best 
segmentation results displayed in Figures 3 – 5 below. For the Iris data set, a cross-validated single fold 
accuracy assessment was performed over a varying number of iterations (50, 100, and 200 iterations), 
with the best, worst and mean segmentation accuracy listed in Table 5 below. The following 
initialization methods were utilized by each algorithm:  
 
Method 1 - Random number in 8 bit range 
Method 2 - ((Random number in 8 bit range / Total Cluster No) * (Current Cluster No)) + offset  
 
With regard to initialization Method 2, “Current Cluster No.” represents the index value of the current 
cluster in a loop that iterates from 0 to the total number of clusters (K) – 1.  Also, for Hazy Landscape 
image, the offset = + 20, and for all other images the offset = -1.   
 

Table 1: Comparison of 30 experiments for satellite image using method 1 and 3 clusters 

Clustering Algorithm 
Overall Accuracy 

           Best                        Worst                       Mean                    Variance 

KM 96.55 82.29 86.80 5.72 x 10  

QKM 97.63 83.91 91.63 2.74 x 10  

FCM 68.19 68.19 68.19 0.00 x 10  

QFCM 68.19 68.19 68.19 0.00 x 10  

NW-FCM 61.17 61.17 61.17 0.00 x 10  

QNW-FCM 61.17 61.17 61.17 0.00 x 10  

ABC 85.93 50.64 77.96 3.70 x 10  

QABC 87.84 73.94 81.07 1.89 x 10  
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Figure 1. Satellite image: A. Original, B. Ground truth. Best segmentation results utilizing 
initialization method 1 and 3 clusters: C. KM, D. QKM, E. FCM, F. QFCM, G. NW-FCM, H. QNW-
FCM, I. ABC, J. QABC. Best segmentation results using method 2 and 3 clusters:  K. KM, L. QKM, 
M. FCM, N. QFCM, O. NW-FCM, P. QNW-FCM, Q. ABC, R. QABC. 
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Figure 2. Hazy landscape image: A. Original, B. Ground truth. Best segmentation results utilizing 
initialization method 1 and 5 clusters: C. KM, D. QKM, E. FCM, F. QFCM, G. NW-FCM, H. QNW-
FCM, I. ABC, J. QABC. Best segmentation results using method 2 and 5 clusters: K. KM, L. QKM, M. 
FCM, N. QFCM, O. NW-FCM, P. QNW-FCM, Q. ABC, R. QABC. 
 

Table 2: Comparison of 30 experiments for satellite image using method 2 & 3 clusters 

Clustering Algorithm 
Overall Accuracy 

           Best                        Worst                       Mean                    Variance 

KM 84.84 81.46 83.23 1.54 x 10  

QKM 85.71 84.09 84.92 2.97 x 10  

FCM 68.19 68.19 68.19 0.00 x 10  

QFCM 68.19 68.19 68.19 0.00 x 10  

NW-FCM 61.17 61.17 61.17 0.00 x 10  

QNW-FCM 61.17 61.17 61.17 0.00 x 10  

ABC 68.30 56.92 62.16 2.19 x 10  

QABC 73.25 60.67 66.82 1.99 x 10  
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Figure 3. Raptor image: A. Original. Best segmentation results using method 1 and 4 clusters: B. KM, 
C. QKM, D. FCM, E. QFCM, F. NW-FCM, G. QNW-FCM, H. ABC, I. QABC. Best segmentation 
results using method 2 and 4 clusters: J. KM, K. QKM, L. FCM, M. QFCM, N. NW-FCM, O. QNW-
FCM, P. ABC, Q. QABC. 
     
As can be ascertained from analyzing the data set segmentation results in Figures 1 - 5 visually or 
Tables 1-5 statistically, it is apparent that the various quantum modeled algorithms exhibit improved 
accuracy, when compared to their classical counterparts.  With regard to accuracy, the greatest 
differences were observed while utilizing initialization method 2. This initialization method often 
trapped the classical algorithms into a subpar local solution, and restricted solution diversity 
substantially.  To the contrary, the quantum variants were often able to escape this local trap and find a 
global solution, thereby exhibiting greater diversity.  This is more the case with QFCM, and less so 
with QNW-FCM, with QNW-FCM escaping in approximately one in three data sets that QFCM could.  
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This is primarily due to the increased degree of stability NW-FCM possesses relative to FCM, and 
QNW-FCM exhibited less susceptibility to the effects of the quantum state machine than QFCM in 
general.  Moreover, due to the computational cost associated with QNW-FCM and NW-FCM, due to 
the size of some of the data sets, for the sake of expediency, pixels were skipped when measuring the 
Euclidean distance between the pixels and the means, which adversely affected the segmentation 
quality.  
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Figure 4. Earth from moon image: A. Original. Best segmentation results using method 2 and 4 
clusters: B. KM, C. QKM, D. FCM, E. QFCM, F. NW-FCM, G. QNW-FCM, H. ABC, I. QABC. 
 

]= 
Table 3: Comparison of 30 experiments for hazy landscape image using method 1 and 5 clusters 

Clustering Algorithm 
Overall Accuracy 

           Best                        Worst                       Mean                    Variance 

KM 91.72 70.36 83.14 5.36 x 10  

QKM 97.52 70.91 90.17 1.07 x 10  

FCM 96.89 96.47 96.83 4.64 x 10  

QFCM 97.32 96.81 96.87 2.48 x 10  

NW-FCM 95.15 95.11 95.13 3.47 x 10  

QNW-FCM 95.16 95.11 95.13 4.33 x 10  

ABC 91.48 68.86 79.13 5.65 x 10  

QABC 97.29 68.53 84.59 5.69 x 10  
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Table 4: Comparison of 30 experiments for hazy landscape image using method 2 and 5 clusters 

Clustering Algorithm 
Overall Accuracy 

            Best                       Worst                       Mean                    Variance 

KM 97.39 86.39 92.76 1.47 x10  

QKM 97.61 86.99 93.30 1.66 x 10  

FCM 78.95 78.75 78.84 7.94 x 10  

QFCM 96.89 96.75 96.82 1.42 x 10  

NW-FCM 78.82 78.71 78.77 3.03 x 10  

QNW-FCM 95.13 95.07 95.10 8.47 x 10  

ABC 94.01 75.26 84.40 4.22 x 10  

QABC 97.36 79.91 90.02 4.04 x 10  

 
 

 
Figure 5. Desert arch with tree image: A. Original. Best segmentation results using method 2 and 4 
clusters: B. KM, C. QKM, D. FCM, E. QFCM, F. NW-FCM, G. QNW-FCM, H. ABC, I. QABC. Best 
segmentation results using method 2 and 3 clusters:  J. KM, K. QKM, L. FCM, M. QFCM, N. NW-
FCM, O. QNW-FCM, P. ABC, Q. QABC. 
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Table 5: Comparison of 30 experiments for Iris data using method 1, 3 clusters, at various iterations 

Clustering Algorithm 
Overall Accuracy 

            Best                       Worst                       Mean                    Variance 

50 iterations 

KM 98.66 93.33 96.71 5.19 x 10  

QKM 100.00 95.33 97.73 4.58 x 10  

100 iterations 

KM 100.00 94.66 97.80 3.02 x 10  

QKM 100.00 97.33 99.02 5.00 x 10  

200 iterations 

KM 100.00 96.66 98.46 1.76 x 10  

QKM 100.00 98.00 99.68 1.30 x 10  

 
    Moreover, while utilizing initialization method 1, the greatest difference in accuracy was between 
QABC and ABC.  This was primarily due to the simplicity of the ABC algorithm as adapted to image 
segmentation, which did not utilize a histogram as originally proposed [14], but simply assigned pixels 
to random centroids as food sources.  Also, of note is the fact that the initialization method 2 offset 
utilized in all algorithms for each data sets was (-1) except for QABC and ABC on the hazy landscape 
image only, which was assigned an offset of (+20) to account for the shortcomings of the image 
segmentation portion of the algorithm.  Furthermore, with these algorithmic shortcomings in mind, the 
quantum variant of this algorithm is highlighted by being able to achieve substantially more accurate 
segmentations, due primarily to the inherent quantum properties of simulated superposition and the 
qubits being operated upon by the unitary quantum rotation gate.  These effects are more apparent 
when comparing QABC and ABC utilizing initialization method 1, than the other clustering algorithms.    

The convergence speed and precision the algorithms possess are primarily due to the effects of the 
gate operating on the qubits, and algorithmic convergence speed varies, and is determined by the 
rotation gate angle value applied to the qubits.  Smaller values of  allow for finer adjustments in the 
probability amplitude coefficients of each qubit, while larger values increase the convergence speed.  
The overall effect is analogous to the convergence properties exhibited by classical genetic and other 
optimization algorithms.  Therefore, due these inherent properties, the quantum model could be applied 
to applications that would normally utilize these types of algorithms.  The difference being, that in the 
case of the quantum variant, the probability of algorithmic convergence is absolute.  This would be the 
case with either before-mentioned model, be it the qubit model, or the various potential well models.  
Regardless of model selection, convergence would be guaranteed. 

Even with this guaranteed algorithmic convergence, the most significant limitation factor is the 
quality of the fitness function.  This was the case with the Iris data set, where during the evaluation of 
k-means clustering, the Davies Bouldin index alone was not sufficient to determine the most accurate 
solution.  Solutions with poor accuracy possessed either very high or very low fitness, while very 
accurate solutions possessed a median fitness value.  Therefore, the algorithm would converge to the 
poor solution with very high fitness.  Hence, in order to avoid this, the choice was made to apply 
parameter controls based upon the symmetrical properties of known class labels. This way, an 
acceptable convergence target was achievable, and a proper assessment could ensue.  Moreover, the 
ability of the qubit modeled clustering algorithms to discover fitter solutions compared to their classical 
counterparts seems to be one of the most noted characteristics in the literature [5].  Also, of note is the 
fact that by analyzing Table 4.5, the effects of algorithmic convergence on accuracy are quite apparent.  
The difference between the mean accuracy of QKM and KM was 1.02 % for 50 iterations, and 1.22% 
for both 100 and 200 iterations.  Thus, from this we can determine that both the algorithm had 
converged by 100 iterations, and going from partial convergence at 50 iterations to full convergence at 
100 iterations, increased accuracy by 0.22%.  Therefore, algorithmic convergence brought to fruition 
by the rotation gate contributed to solution enhancement.  In addition, the quantum crossover and 
mutation inversion operators helped vary some of the converged centroid values for selected members 
of the population, thereby effectively enhancing search space exploration.  Furthermore, the costs 
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associated with the quantum operators and Turing machine collectively result in an increase in 
algorithmic execution time of approximately 1.25 times that of the classical variants on average.      

In order to better understand the convergence properties associated with quantum modeled 
algorithms, let us examine the evolution of stored solutions written to the QKM directory during Store 
B(t) for the hazy landscape image: 

 

 
 

Figure 6. Evolution of stored solutions for hazy landscape image 
 
Moreover, the following graph emphasizes the relationship between solution accuracy and solution 
fitness for the same series of stored solutions during a single run of the hazy landscape image: 
 

 

Figure 7.  Accuracy versus fitness graph for hazy landscape image 
 
While referring to the stored solution segmentation results in Figure 6 and the graph in Figure 7, notice 
that for the third stored solution there is a large jump in accuracy from ~72.5% to ~82%, and a slight 
jump in fitness.  This corresponds with the convergence of a single centroid value (cluster 5, band 1) 
between the second and third stored solutions.  Note that the gate operates on the qubits for the first 
time after the first iteration, so the third solution is the first solution that has been operated upon. The 
first two solutions are random, with an equal probability of all possible solutions occurring, since the 
gate has not had a chance to operate upon the qubits, so no convergence has began to occur.   
Following this, the fitness and accuracy for the fourth solution both continue to climb.  Similarly, this 
corresponds with a single converged centroid value.  Now note the jump in both accuracy and fitness 
between the fourth and fifth solutions.  The difference in both fitness and accuracy between these two 
solutions represents the largest in the graph, and corresponds to five converged centroid values.  
Moreover, between the fifth and sixth stored solutions both fitness and accuracy increase again, though 
the difference in accuracy is much more modest than between the previous two solutions.   From this 
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point forward, the fitness continues to rise but the accuracy fluctuates up and down slightly, with the 
twelfth stored solution measuring as the most accurate at ~97.43%.      
    In order to understand how quantum achieves more diverse solutions, analyzing a contiguous 
sequence of solution fitness values is useful.   The following graph highlights the effect of the quantum 
Turing machine on measured fitness values on the desert arch with tree image, while utilizing 
initialization method 2 and 3 clusters: 

 

 

 
Figure 8. Fitness versus solution graph for desert arch with tree image and 3 clusters 

 
Likewise, the following graph highlights the effect of the quantum Turing machine on measured fitness 
values on the desert arch with tree image while utilizing initialization method 2 and 4 clusters: 
 

 
 

Figure 9. Fitness versus solution graph for desert arch with tree image and 4 clusters 
 
Of note, is the fact that the same phenomena is occurring in both graphs.  Furthermore, the desert arch 
with tree image segmentation results with 3 clusters reflects no detectable difference in overall 
accuracy, while results with 4 clusters reflect a very substantial increase in overall accuracy. 
 
 
5. Conclusions  
 

In order to assess the effectiveness of the quantum bit model, four quantum-based clustering 
algorithms where proposed. Experimental results yielded improved accuracy when compared to each 
respective classical variant.  In addition, the algorithms exhibited a controllable rate of convergence, 
with eventual algorithmic convergence guaranteed.  Moreover, promise was exhibited with regard to 
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future endeavors involving applying quantum computing models to clustering algorithms, as well as 
any application that would normally utilize a classical genetic or other optimization algorithm.   
    Applicability far exceeds image segmentation, and could be extended to a multitude of other 
applications that require clustering data sets and/or can benefit from the properties inherent to quantum 
mechanical models.  In order to maximize the effectiveness of the quantum model as applied to data 
clustering, the capabilities of the fitness function for solution evaluation must be optimized, so as to 
allow the qubits to converge to a more accurate solution.  Since algorithmic convergence is guaranteed, 
properly evaluating what constitutes a “fit” solution is key to maximizing the potential of the model.   
As a result of these findings, future work will focus upon applying quantum modeling to other 
clustering or optimization algorithms in order to reap the benefits of simulating quantum mechanical 
properties, and enhancing the fitness function capabilities which directly guide algorithmic 
convergence.   
    In particular, these quantum modeled algorithms have proven that enhanced solutions are obtainable 
via simulated superposition, and that the quantum Turing machine serving as a standalone random 
number generator, absent of any operators, can exceed the random capability of the Java Random class, 
with a little additional computational cost.  This fact is evident not only from the accuracy assessment 
of solutions, but also from the increased variance in fitness values, such as the graphs in Figures 8 and 
9 illustrate.  With regard to image segmentation, it can be said that simulating the properties of 
superposition can produce more diverse solutions.  Thereby, increasing the probability that the search 
space will be maximized, and also that the global optima will be discovered.    It can further be stated 
that the quantum model can be applied in a practical manner, especially if implemented absent of any 
operators, since the complications inherent to employing proper fitness functions would be alleviated.  
Therefore, it can be concluded that quantum modeled algorithms are viable as evidenced in this body 
of work, via empirical experimentation and subsequent data analysis.   
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