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Abstract 

Artificial Neural Network (ANN) as a method of data processing and inspired by studies of the 
nervous systems – has become a robust tool for modeling complex, non-linear and dynamic processes 
due to its flexible mathematical structure that easily generalize patterns with results even with 
imprecise, noisy and ambiguous input data. This work describes ANN’s application to implement a 
model to simulate runoff at the Benin Owena River Basin Developmental Agency (BORDA) – with data 
collected from four (4) gauge and six (6) stream-flow stations namely: Benin, Ekpoma, Sapele and 
Agbor catchments respectively. The study uses the 4G SE-design; the structured analysis of the existing 
is based on the lumped, conceptual hybrid (HBV and TOPMODEL) used for calibration and validation. 
The existing system’s bottleneck includes large computational demand, excessive parameter 
requirement with validation, still an on-going process. Its mean annual rainfall of Benin, Ekpoma, 
Sapele and Agbor stations are 823, 732, 962 and 734mm respectively with computed COE of 58, 24, 56 
and 42% respectively – indicating strong inter-annual and spatial variability in sub-catchments. 
Variation in the annual rainfall was observed and long-term runoff trend reflects, the effect of 
variation cycle with significant correlations between rainfall and runoff as observed in sub-catchments 
(via historic dataset obtained for the period). The study contributes as: (a) soft computing (a branch of 
Artificial Intelligence) with an aim to create a synergy with other fields/disciplines, and in this case 
(hydrology) in its bid to implement the hybrid ANNGSA algorithm for RR process. It also contributes in 
Artificial Intelligence (AI) – as it aims to create machine/system that mimics the human brain – so that 
such systems (in this case – hybrid ANNGSA model) that will train the ANN network to simulate future 
flood occurrence, provide lead time warning for flood management. 
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1. Introduction 

 
Soft Computing (SC) as a field aims to merge Artificial Intelligence with other fields of endeavors 

to create a synergy and new field, dedicated to solve problems by exploiting numeric data and human 
knowledge simultaneously through the use of mathematical models and symbolic reasoning – to yield a 
technique, tolerant to imprecision, uncertainty, partial truth and noise in its input data via optimization. 
Thus, such models end up as soft as the human brain [1,2]. 

Real world optimization requires tuning to be robust, so that even with noise employed at its input, 
it yields an output solution that is guaranteed of high quality. Research in a bid to tune search methods 
have helped to advance the field of Evolutionary Algorithms – capable of performing both quantitative 
(numeric) and qualitative data processing that ensures qualitative statements of knowledge and 
experience in form of natural languages [3]. SC components spans across several branches as inspired 
by evolution, natural laws and behavioural patterns in biological populations. These includes Genetic 
Algorithm, Artificial Neural Network, amongst other – all of which are meta-heuristic optimization for 
constraint satisfaction problems in vector space made up of intelligent agents that searches a space for 
its optimal fitness. Thus, SC mimics natural agents seeking food and have proven efficient in complex 
optimization [4]. [5,6] notes that robust optimization has three feats in its attempts to explore dynamic 
processes namely: 
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a. Robustness helps to estimate system’s effectiveness even with noise implementation. 
b. Continuous adaptation (yields agents void of local minima, introduces random immigrants of 

high diversity to slow convergence in the search space as well as balances data exploitation and 
exploration so that in learning the properties of change, it yields an accordingly biased solution). 

c. Flexibility – decisions made with uncertainty has its impacts in a system’s future state. Thus, 
optimization aims to predicts the future needs with an algorithm that focuses on both its objective 
function, to make the system flexible and facilitate adaptation (if necessary) with the ease of 
blackbox integration. 

 
Environmental change occurs quickly. Thus, long-term projection prone to errors, adaptation 

expensive and technically impossible [7]. The study of neural networks derives from trials in an 
attempt to translate into mathematical models, principles of biological processing and generate, in the 
fastest time period, implicit and predictive model evolution of a system. In particular, NN derives from 
experience its ability to be able to recognize feats and behaviours from historic data so as to be able to 
“suggest” to the model, the optimal fitness of high quality and void of over-fitting, irrespective of 
modification via other approximations that uses multiple agents. These cannot be ignored as they 
constantly affect quality of any solution [8]. This work illustrates adopts neural network model 
(combined with GSA to speed up the last stages of ANN) in RR modeling. Thus, we explore the 
structural differences and implications of multi-agent and multi-population models (as agents do not 
follow predetermined rules, but tend to create their own behavioral rules based on a model for 
rainfall-runoff of hydrological data). 

The need arose from: (a) the dynamic nature of RR and its conceptual models that are flawed and 
filled with unfounded results, (b) some ANN use hill-climbing method whose solution may get stuck at 
local minima, (c) ANN’s speed shrinks as its approaches global optima.  

The study implements a hybrid (ANNGSA) algorithm for RR model, compares result with 
existing benchmarks via data generated from BORDA in Nigeria. GSA will help to speed up NN final 
stages and find robust optima in a shorter amount of time, in large and complex tasks. 

2. Soft Computing and Optimization 

Optimization deals with searching for optimal solution(s) in a given problem, chosen from set of 
possible solutions (search) space. The study considers input and output constraints – with 
uncontrollable parameters modeled in the ANN’s hidden layer. Thus, are not explicitly present with a 
search space confined to real parameters often limited by lower/upper bound values. Soft Computing 
on the otherhand, deals with biologically and evolution inspired mathematical models that spans across 
various fields. Examples includes as thus:  

2.1. Artificial Neural Network (ANN) 

The structure of ANN as a data processing model is inspired by biological neurons – consisting of 
interconnected neurons or nodes (used as processing elements). Its major feat is its ability to learn by 
example via simulation, making them universal approximators. The brain learns in its behavior to 
process data – and each neurons sends/receives electrochemical signal from others neurons via a host 
of fine structures called Dendrites. These receives signals are re-sent to its axon so that the Synapse 
converts axon’s activities and thus, learning can occurs by adjusting weight of the synapse [9]. 
Synapses are connecting links, characterized by weights whose input is summed by an adder. The 
operations may vary depending on the task (linear combiner) at hand and its activation function to limit 
the NN output’s amplitude. In a simple mathematical model, the synapses effect represented by weight 
connections help modulate the effects of associated inputs and the nonlinear feats exhibited by its 
nodes via transfer or activation function. Neuron’s output is computed as weighted sum of input via a 
transfer function [10]. Learning is achieved by adjusting its weights via an algorithm, which defines a 
neuron’s output in terms of its induced local field and neuron output is given by: 
 

∅ ൌ 	݂ሺ݊݁ݐሻ ൌ ݂෍ܺ݅ ∗ ܹ݆݅														ሺ1ሻ

௠
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Encoded, ANN has three basic layers namely: input, hidden and output – and based on two 
configurations: feed-forward (signal flows from input to output without feedback and data processing 
extended over multiple layers of units); and recurrent (same as feddforward but with feedback, 
dynamic properties and an activation values that undergoes relaxation to evolve the network to a stable 
state where its activation values change no more. In some tasks, its output value change is significant 
such that the dynamic behavior constitutes network’s output). These architectures is dependent on 
application area, feats and system requirement [11]. ANN is configured by applying a set of inputs 
produces a set of desired outputs. Various methods are used to set the connection strengths namely: (a) 
explicitly via apriori knowledge, and (b) train network via teaching it patterns that changes its weight 
based on a learning rule. Learning is divided into: supervised, unsupervised and reinforcement [12].  

[13-17] notes that in supervised learning, an input vector with a set of desired responses, one for 
each node, is relayed to the output. A forward pass is done and errors between desired and actual 
response for each node in the output is found, and then used to determine weight changes in the net 
based on the learning algorithm Thus, desired signals on output is provided by an external teacher. 
Example is back-propagation, delta rule and perceptron rule. In unsupervised learning (or self 
organization), its output unit is trained to respond to clusters of pattern at its input so that the system 
discovers statistically, salient features of the input population. It also has no prior knowledge into 
which patterns are classified; Rather, the system develops its own representation of input stimuli; while 
in Reinforcement is learning what to do, mapping situations to actions to help maximize a numerical 
reward signal. The learner is not told actions to take, as in most forms of machine learning, but instead 
must discover which actions yield the most reward by trying them. In some cases, the actions may 
affect not only the immediate reward, but also the next situation and, through that, all subsequent 
rewards. These two feats, trial/error search and delayed reward are its two distinguishing properties. 

2.2. Gravitation Search Algorithm (GSA) 

GSA is based on Newton’s laws of gravity and motion with its main idea, being to consider 
isolated system of masses, where every mass represents a solution to a certain problem. Law of gravity 
states that every particle attracts another and the gravitational force between particles are directly 
proportional to the product of their masses and inversely proportional to distance between them [18]. 
So, an agent’s performance depends on its mass as they attract each other via gravitational force (a pull 
towards those of heavier masses). Each N agents is initialized as thus:  

ܺ݅ ൌ ሺݔ௜
ଵ ൅ ௜ݔ

ଶ൅. . . ൅ݔ௜
ௗ ൅	ݔ௜

௡																ሺ2ሻ 
n is dimension of the problem, and also the position of the ith agent in the dth dimension. At start point 
of the solution, agents are situated randomly. At specific time, a gravitational force is defined as thus: 

݆݅ܨ ൌ ሻݐሺܩ ൌ
ሻݐሺ݅ܯ ∗ ሻݐሺ݆ܯ
ܴ݆݅ሺݐሻ ൅ ߝ	

	ሼ݆ܺሺݐሻ െ 	ܺ݅ሺݐሻሽ											ሺ3ሻ	 
 

Mi and Mj are objects (i and j) masses, Rij(t) is Euclidean distance between the two, G(t) is gravitation 
constant at time t and ε is a small constant. The randomly initialized gravitational constant G, decreases 
by time t to control the search’s accuracy. Thus G is a function of initial value (G0) and time (t). Total 
force acting on agent i in the dimension d is thus:  

௜ܨ
ௗ ൌ ෍ ሺ݅ሻ݀݊ܽݎ ∗ ሺ4ሻ								݆݅ܨ

௝∈௞௕௘௦௧,௝ஷଵ

 

 

rand – randomizes agents’initial states between intervals [0,1]. The acceleration of agent i, at time t, in 
dth dimension is directly proportional to force acting on that agent, and inversely proportional to 
agent’s mass by: 

ሻݐሺ݀݅ܣ ൌ
ሻݐሺ݀݅ܨ
ሻݐሺ݆݅ܯ

												ሺ5ሻ 

The next velocity of an agent is a function of its current velocity plus its current acceleration. 
Next position and velocity of an agent is calculated as thus:  
 

ܸ݅݀ሺݐ ൅ 1ሻ ൌ ሺ݅ሻ݀݊ܽݎ	 ∗ 	ܸ݅݀ሺݐሻ ൅  ሺ6ሻ																ሻݐሺ݀݅ܣ	
ܺ݅݀ሺݐ ൅ 1ሻ ൌ 	ܺ݅݀ ∗ 	ܸ݅݀ሺݐ ൅ 1ሻ																																				ሺ7ሻ 
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Vi
d(t) is agent velocity in dth dimension at time t, and rand is a random number between [0,1]. Mass is 

calculated via fitness evaluation and are updated as: 

ሻݐሺ݅ܯ ൌ 	
ሺ݅ሻݐ݅ܨ െ ሻݐሺݐݏݎ݋ݓ	
ሻݐሺݐݏܾ݁ െ ሻݐሺݐݏݎ݋ݓ	

																ሺ8ሻ 
 

Fit(t) is fitness value of an agent i at time t. Best(t) and worst(t) indicates the strongest and weakest 
agents based on to their fitness route. For a Max task, they are defined:   

ሻݐሺݐݏݎ݋ݓ ൌ 	 max
௝∈ሼଵ,ଶ…ேሽ

 ሺ9ሻ															ሻݐሺݐ݅ܨ

ሻݐሺݐݏܾ݁ ൌ 	 min
௝∈ሼଵ,ଶ…ேሽ

 ሺ10ሻ															ሻݐሺݐ݅ܨ

 
 
 
 
 
 
 
 
 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

At start, agents are located as solution points in the search space such that with each cycle, the 
positions and velocities of agents are updated via Eq. (5, 6 and 7). G and M as calculated are updated 
with each iteration or move, and stopped when an optimal solution is found. GSA use exploration 
(ability to navigate the space) and exploitation (ability to find optima around a good solution) in the 
shortest time. Exploration steps guarantee the choice of values or parameters of the random agents; 
while exploitation steps allows agents of heavier masses to move more slowly in order to attract those 
of lesser mass [19]. 

3. Methods and Materials 

The study area selected is the Benin-Owena River basin of Nigeria with landmass of 22045km2, 
mean rainfall of 846mm annually and perennial discharge of 3.8m3/s (dry periods) and 15m3/s (peaks). 
The area’s elevation ranges at various sub-stations ranging from 816 and 2178m a.s.l. Average slope is 
48° and most slopes have south-eastern orientation. Soil texture is mostly loam and clay due to the 

No 

Yes 

Generate Initials 

Find fitness function 

Update G, best and 
worst of population

Calculate M and A 

Update velocity and position 

Meet 
criterion end 

Return best solution 

Figure 1. Steps for gravitational search algorithm 
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swampy nature. Forests dominated by shrubs and timber covers approximately 64% of the catchment 
area with its statistical parameter as in table 1. 

Table 1. Statistical Parameter for Rainfall Runoff for Benin Catchment Area (2003 – 2008) 

Area 
Mean Std Dev Coeff. Of 

Variance
Max 

Rainfall
Min 

Rainfall 
Benin 

Ekpoma
Sapele 
Agbor 

823 
732 
962 
734 

359 
299 
420 
343 

58 
24 
56 
42 

4532 
1034 
4320 
1354 

142 
102 
127 
156 

 
The historic dataset collected at the Benin catchment is from 2003 – 2008; and for this study – the 

dataset is split into three: training (45%), cross-validation (25%) and validation (30%) – since there is 
no hard rules in data splitting. All three fragment starts at period of constant low discharge and rainfall. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.1. Experimental Models 

 
The study adopts unsupervised learning employed on the TLRN architecture with 3 datasets; 

while RBF is used as a control model to compare the results. The TLRN has input weights, transfer 
function to control output and learning laws to define the importance of input weights. The goal is to 
process data by training them to generate satisfactory results and provide a fail-safe to eradicate noise 

Figure 2. Block diagram of the envisaged ANNGSA model design 
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in a data-stream acquired via Online-Data Acquisition System (DAS) so that data is processed at 
real-time. The network learns from experiences, generalized from previous datasets to new ones with 
abstract feats, at its inputs containing irrelevant data. The model’s control parameters are neuron’s 
weights and its biases; and an output layer with a neuron called runoff. The radial basis function is 
implemented as control model to check results from our MLP-design [21]. 

Model’s nonlinear states are identified at its input and output data selection during training and 
testing, model structure selection, parameter estimation and validation. Thus, the training data must 
represent watershed feats and meteorological patterns in runoff modeling. Input variable (rainfall) are 
selected to describe the physical phenomena of the process. Thus, we employ a 5year time-series data 
of Benin catchment to evaluate the model’s performance with the data split into three sets: training, 
cross-validation and testing. The study aims to illustrate model’s ability in simulating future runoff 
occurrences, without including land-use properties of watersheds.  

Trial-error is used in selecting number of hidden layers and nodes in each hidden layer. Thus, NN 
with one hidden layer can be used – for to increase the number of parameters by adding more hidden 
layers, complicates training – though the network is complex enough to accurately simulate dynamic 
and/or nonlinear feats [22]. Standard tasks use 15, 30, 45, 60 and 100 hidden nodes (on each layer) to 
examine model’s performance and our study however, adopts single hidden layer with 18-hidden 
nodes. Thus, we adopt a total of 18-input signals (with regards to evapo-transpiration, rainfall and 
previous discharge at the four stations). Previous studies and preliminary results indicate that NN with 
a hidden layer outperform those of two or more. The optimal hidden layer size is found by 
systematically increasing the number of hidden node until network’s performance shows no further 
improvement or it longer improves significantly. 
 
3.2. Model Performance Evaluation 

 
The model’s performance is evaluated via its computed coefficient of efficiency (COE), mean 

square error (MSE), mean absolute error (MAE) and mean relative error (MRE) – as these are most 
commonly used performance measures in hydrological modeling. MSE, MRE and MAE will have an 
ideal value of 0; while COE will aim to show the model’s efficiency with an ideal value of 1 as seen in 
equations (8), (9) and (10). Ypi and Yoi are predicted and observed output values, n is observations over 
which errors are computed. A model with minimum error is considered, best choice. 

ܧܵܯ ൌ 	1 ݊ൗ 	෍ሼሺܻ݅݌ െ ሺ10ሻ							ሻ2ሽଵ/ଶ݋ܻ݅

௠

௜ୀଵ

 

 

ܧܣܯ ൌ	1ൗ݊ 	෍|ܻ݅݌ െ ሺ11ሻ																|݋ܻ݅

௠

௜ୀଵ

 

 

ܧܴܯ ൌ	1 ݊ൗ 	෍
݅݌ܻ| െ |݋ܻ݅

݋ܻ݅
													ሺ12ሻ

௠

௜ୀଵ

 

 

Model validation/testing here, is an undertaking that is not and should not be carried out by a 
single researcher or research group; but, requires a scientific dialogue. Improper model applications 
and its ambiguously presented results sometimes impede such dialogue. The aim of such pitfalls, is to a 
great extent minimize as well as to reduce confusion in hydrological modeling. 

4. Result Presentation Tradeoffs 

Hydrological simulation is a feat not to be undertaken by any one method. Thus, tradeoffs in the 
result of each one researcher and/or research groups will fall under the following: 

 
a. Result Presentation – Researchers with their flaws, often prefer to modify or build new models 

rather than re-test limitations, biasness and inabilities of existing ones – since negative results are 
less valuable [23]. Knowledge models are good examples, where limitations are not clearly stated, 
as they are often overrated [24,25]. Thus, modelers use many methods and misleading graphs to 
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compare simulation or observations as justified [26,27]. This study’s data driven models employs 
evolutionary stochastic method to cub non-linearity and dynamism with historic datasets, used to 
train, cross-validate and test such unlike with knowledge driven models. 

b. Model Efficiency – [28] defined model’s efficiency as analogous to coefficient of determination – 
R2, now widely termed goodness-of-fit. Figures used to show how well simulations is in agreement 
with observations often provide limited data as long runoff series are squeezed, and lines for 
observed and simulated runoff are not easily distinguishable. Some authors do not provide 
numerical data; but rather states that the model is in ‘good agreement’ with observations [29,30]. 
Even when a measure of goodness is given, it does not always provide the relevant information.  

c. Insufficient Model Testing – The most used model validation is simulation, compared with 
observed runoff for a period not used in test. Studies seldom exist where the result of such test is 
‘unsuccessful’ [31] and authors cannot publish negative results. An exception is [32] where poor 
validation results are reported. So many authors validate poor results [33,34]. [35] predicted the 
response of runoff to climatic changes without any kind of validation of the calibrated models. 
Many studies suffer from inadequate data, the distributed model seldom demonstrates superiority 
over lumped. If a model aims to simulate more than runoff, such ability is demonstrated [27]. 
Development of complex models based on limited data gives misleading results [36]. A second 
issue is drawing unfounded conclusions in testing. [37] conclude that the close agreement between 
analytical and numerical results underscores the utility of Muskingum-Cunge routing as a viable 
and accurate method for routine applications in flood hydrology.  

4.1. Model Performance Analysis 

Tables 2-5 show comparative performance values between the TLRN and RBF models. Results as 
in Table 1 (Benin, 18 inputs); Table 2 (Sapele, 18 inputs); Table 3 (Ekpoma, 17 input nodes) and Table 
4 (Agbor, 17 input nodes) – implies that the performance of the model is improved during testing with 
a greater level of efficiency of the catchment (i.e. proper network training and criteria selection). 
Furthermore, COE for Benin substation is better than the Sapele substation (it is probably due to the 
size of the substation that contribute to the neural modeling). COE, MSE, MRE, and MAE reflect that 
the RBF consistently outperforms the TLRN (MLP) – and the RBF model can be trained much faster 
than MLP (though NN performance is hardly influenced by level of non-linearity and training data 
selection). Number of neurons in hidden layer significantly influences network’s performance. If 
number is small, network may not achieve its accuracy – and too many nodes result in overtraining. 
Fully developed sub-areas (Benin and Sapele) generate higher peak flood discharge during training and 
generalization. Use of two hidden layers is a merit in larges substation (Benin and Sapele); while for 
smaller catchments – it is sufficiently handled by single hidden layer NN model structure. Obviously, 
the application of neural network method in modeling the relationship between rainfall and runoff for 
these catchment areas is quite appropriate. 

Table 2. Simulated Values from Benin Station 

Model 
Training Phase   

I-H-O 
Structure 

COE
R 

MSE 
cumecs

MAE 
cumecs

MRE 
cumecs

TLRN 18-18-1 0.635 0.926 0.665 1.208 

RBF 18-input 0.982 0.982 0.618 0.969 

Cross Validation Phase 

TLRN 18-18-1 0.723 0.886 0.712 1.109 

RBF 18-input  0.892 0.889 0.567 0.901 

Testing Phase 

TLRN 18-18-1 0.641 0.654 0.518 1.385 

RBF 18-input  0.966 0.596 0.442 1.510 
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Table 3. Simulated Values from Sapele Station 

Model 
Testing Phase   

I-H-O 
Structure

COE
R 

MSE 
cumecs

MAE 
cumec

MRE 
cumecs 

TLRN 18-18-1 0.723 0.910 0.710 1.328 

RBF 18-input 0.832 0.945 0.623 0.789 

Cross Validation Phase 

TLRN 18-18-1 0.713 0.902 0.712 1.021 

RBF 18-input 0.821 0.891 0.70 0.901 

Testing Phase 

TLRN 18-18-1 0.714 0.723 0.628 1.108 

RBF 18-input 0.833 0.756 0.512 1.310 

 
 

Table 4: Results at the Ekpoma Station 

Model 
Training Phase   

I-H-O 
Structure 

COE 
R 

MSE 
cumecs

MAE 
cumecs

MRE 
cumec 

MLP 17-17-1 0.552 0.920 0.532 1.109 

RBF 
17-input 

nodes 
0.812 0.956 

0.621 0.961 

Cross Validation Phase 

MLP 17-17-1 0.823 0.621 0.629 0.915 

RBF 
17-input 

nodes 
0.827 0.684 

0.721 0.891 

Testing Phase 

MLP 17-17-1 0.641 0.654 0.518 1.113 

RBF 
17-input 

nodes 
0.966 0.596 

0.442 1.065 

 
Table 5: Results at the Agbor Station 

Model 
Training Phase   

I-H-O 
Structure

COE
R 

MSE 
cumecs 

MAE 
cumec 

MRE 
cumecs

MLP 17-17-1 0.632 0.800 0.620 1.280 

RBF 17-input 0.732 0.882 0.610 0.789 

Cross Validation Phase 

MLP 17-17-1 0.621 0.822 0.702 0.867 

RBF 17-input 0.761 0.811 0.691 0.921 

Testing Phase 

MLP 17-17-1 0.714 0.723 0.628 1.180 

RBF 17-input 0.833 0.756 0.512 1.109 

 
 
4.2. Discussion and Findings 

 
The network models used for this study are the TLRN and RBF with one hidden layer – a hybrid 

(NNGSA) adopted from [20] – and the results reflect that the model’s performance is satisfactory and 
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feasible for RR-model in the Benin catchment of Benin-Owena Basin. The study noted that a model’s 
inaccuracy is clarified by longer period of training data (so long overtraining does not occur) with 
many peak discharge as the work was carried out using the 5years period historic dataset of the 
rainfall-runoff records in four (4) areas of BORDA, in the Niger Delta Region of South-South Nigeria. 

Though the general pattern of rainfall at the stations was similar over the period, annual totals 
indicates both spatio-temporal variability in rainfall over Benin and Sapele catchment. There was also 
inter-annual and inter-monthly variability in the climate of Benin-Owena over the past century. Runoff 
from all stations display a similar general pattern to rainfall which both shows an increase that had a 
peak in 2010. Gauging stations in Ekpoma and Agbor had lesser runoffs because rainfall increases 
from Southwest to Southeast in Benin catchment. The lack of similarity in the runoff pattern from the 
same substations indicates high spatial variability in runoff. The gauging stations show differences in 
runoff – indicates differences in the average rainfall received, land use type or soil type amongst other 
hydrological feats. There is today, significant relationship between rainfall and runoff. 

[37] notes that the cohesive relationship exist between rainfall and runoff due to a considerable 
temporal and spatial variability exhibited by RR-process (various physical mechanisms that governs 
the process’s dynamics). A major rainfall feat of rainfall within semi-arid and swampy areas of Nigeria, 
is that it comes as rainfalls and convective thunderstorms that are highly isolated resulting in a high 
spatial variability. Factors that affect runoff are more uniform for smaller catchments and it is expected 
that their coefficients of determination will increase with decrease in area. However, this was not the 
case as smaller catchment had almost similar results and sometimes higher coefficients of 
determination, which demonstrates that rainfall variance is same as runoff variance since variability of 
actual evo-transpiration is small relative to variability of annual precipitation and runoff. 
 
4.3. Benchmark Comparison 

 
Results from [38] compared against those obtained from this study notes that various attempts to 

improve conceptual runoff models have often resulted in frustrating conclusions. Our study notes the 
various result tradeoffs in the model evaluation, and though model can be modified towards a better 
description of the real processes, the quality of runoff simulations does not increase significantly. For 
the HBV model as adopted by [38], such experience has been reported for tests of different 
formulations for various models, a measure of evaporation and snowmelt [39], insertion of evaporation 
depending with altitude [40] and the use of an explicit interception routine [41]. Good results in terms 
of runoff simulations are obtained with different and even unrealistic concepts. The difference in 
numerical measures of Reff is often small, even in cases where the model performance increased after 
modifications [42]. 

Unsatisfactory results in [38] are partly attributed to the nature of the model’s evaluation as it is 
not the case in this study. It was noted that a model’s efficiency assesses its goodness, which is not 
often sensitive to runoff improvements during low flow conditions – as such improvements may vanish 
in a simulated runoff. Thus, progress made in use of remote data-sensing helps to provide new ways to 
parameterize and validate models [43]. Land-use classification for modeling is often derived from 
satellite data and spatial distribution of some variables can be estimated via extension of surface 
saturated areas, soil moisture in areas with no or only little vegetation. Remotely-sensed quantities may 
be used as proxies to other variables [44] and these will further increase the total information 
extractable from the two types of data. The study notes that difficulties in the use of remotely-sensed 
data are in its limited availability and costs. The increased computing power may be utilized in 
different ways – that allows refining the resolution of distributed models or include additional process 
representations so as to enlarge a model’s complexity via executing more calculations per model run. 

The use of data-driven models via SC may be used to address model uncertainty of Monte-Carlo 
procedures employed in conceptual/knowledge models [45]. The study noted that quantification of 
prediction uncertainties is of central importance, especially in practical applications, given the large 
uncertainties associated with the use of runoff models. For HBV model, [46] proposed use of 
quantification for runoff forecasts in operational use. Model complexity must aim at improves the 
model’s testability, often a limited value with routines that cannot be tested against the data. 
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5. Conclusion and Recommendations 
 
The study adopted TLRN and RBF, whose goal is to process data via previously trained (and 

cross-validated) and tested algorithm using historic dataset so as to generate satisfactory results. The 
network learns from experience by generalizing from previous examples to new ones, and abstract 
characteristics from inputs that may contain irrelevant data. The main control parameters are its 
weights and biases; and its output layer has one neuron runoff. SC via AI methods are successfully 
used to model complex/dynamic relationships and studies indicates, NN have proven to be useful tools 
in hydrological modeling and flood management. 

The model observed that the rainfall and runoff variability of the Benin catchment is considered 
both temporarily and spatially, and its implications on surface water resources should be explored in 
flood management. Data from 4 gauge-stations in the catchment (22045km2) is used to (a) develop 
GSANN model to simulate RR, and (b) determine performance via known benchmark. The mean 
annual rainfall of the four rain gauge stations Benin, Ekpoma, Sapele and Agbor are 823, 732, 962 and 
734mm respectively, with COE of 58, 24, 56 and 42% respectively – strong inter-annual and spatial 
variability in sub-catchments. Variation in annual rainfall was observed and long-term trends in runoff, 
reflects the effect of cycle variations with significant correlations between rainfall and runoff as 
observed in sub-catchments (via historic dataset obtained for the period 2006 – 2010). 

Models are not more fiction than a representation of reality as they may provide good and useful 
fiction – and the primary value of models may be their use as an intellectual tool, to help us better 
understand and reflect on reality. By this, models support experts to make estimates about the future, 
but models alone cannot provide these estimates and simulations. As thus, the model is recommended 
for use in RR-model simulation. Thus, these recommendations were made from the study: 

 
1. Parameter uncertainty is a significant source of uncertainty in model predictions. Thus, model 

predictions can and should be inputted in ranges, computed via Integral Monte-Carlo methods, 
rather than as single values. 

2. Multi-criteria training with adequate datasets can help to reduce parameter uncertainty. 
3. Simulations and model prediction have limited practical use without clear data about its reliability 

and accuracy. 
4. This data-driven model has only been calibrated against runoff and it may not provide reliable 

simulations cum prediction of internal variables like groundwater levels. 
5. Validation via differential split-sample testing will acts a powerful tool and is essential for the 

further development of a model for two reasons: (a) identification of weak parts and (b) 
evaluation of improvements. 
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