
Efficient Implementation of Particle Swarm Optimization Algorithm

Ruirui Gu, Zhefu Shi

R. Gu is with Microsoft, One Microsoft Way Redmond, WA, 98052, ruiruigu@microsoft.com

Z. Shi is with University of Missouri – Kansas City, zhefushi@mail.umkc.edu

Abstract
Dataflow representations have been developing since the 1980’s. They have proven to be useful in

identifying bottlenecks in DSP algorithms, improving the efficiency of the computations, and in

designing appropriate hardware for implementing the algorithms. This paper extends and

demonstrates the use of dataflow-based methodology, called as Reactive Control-integrated Dataflow

based Aggressive Forwarding Check (RCDF-AFC), to implement a Particle Swarm Optimization (PSO)

algorithm in hardware-software co-design. PSO has been extensively used in the real world but its

application has been limited to relatively slow processes because it is computationally intensive. It is

shown that the time required for the PSO computations using extensive iteration for solving the

optimization problem can be reduced by means of dataflow based analysis and implementation

improvements based on these analyses.

Keywords: Particle swarm optimization (PSO), Model Predictive Control (MPC)

1. Introduction

 Model Predictive Control (MPC) provides an elegant framework for higher accuracy. In previous

research [1], we used dataflow techniques to improve the speed of MPC algorithms that utilize the

Newton-KKT method or the active set method to solve for the control value. In this paper, we extend

our work by applying similar but different dataflow techniques to improve the

performance of another nonlinear control algorithm, particle swarm optimization (PSO), which can be

used in the nonlinear MPC controllers [2].

 The motivation to the work is based on two facts. One fact is although MPC has been applied to

many practical problems, it is computationally intensive. Due to intensive computation takes a long

time interval, MPC does not fit real time applications although it can provide more accurate results.

The second fact is that hardware-software design makes it possible to efficient implement traditional

algorithms in parallel hardware platforms, such as fast development of the homogeneous multi-core

parallel processors.

 As a result, there has been considerable research aimed at speeding up the computation of optimal

controls for MPC. Most of this research has concentrated on improving the algorithms. Some work [3]

has been devoted to improving the implementation of the algorithms. It is well known that an algorithm

that can be executed with many parallel steps will be much faster if properly implemented than a more

efficient algorithm that must operate sequentially. However it is not practical to assume availability of

unlimited parallel processing units.

 The paper is organized as follows. We generalize the related work in the next section. We describe

the dataflow framework to be applied to PSO in the following section. We then elaborate the method of

Reactive Control-integrated Dataflow based Aggressive Forwarding Check (RCDF-AFC), which can

be used to improve the MPC system performance. Finally, we conduct the simulation in Matlab and

compare the results with the function provided by Matlab library.

2. Related work

 Some related work in both controls and computer engineering was summarized in our earlier papers

[1][2]. In this section, we focus on efficient implementation of computational intensive algorithms on

parallel systems.

 There are already some works on implementation of complicated control systems, such as MPC. [4]

proposed a generic solver to specify Receding Horizon Control (RHC) policy using Matlab. [5]

proposed a generalized C++ class to solve nonlinear MPC and dynamic optimization problems

Progress in Intelligent Computing and Applications
Volume4, Number1,March 2015
doi: 10.4156/pica.vol4.issue1.1

1

Efficient Implementation of Particle Swarm Optimization Algorithm
Ruirui Gu, Zhefu Shi

using BzzMath Library. However, none of the work above has exploited the usage of parallel systems

explicitly.

 There are also some works to introduce parallel implementation into modern control fields. One

example is parallel version of Linpack [6]. Our previous work also started the exploration. However,

there is little work on how to make it practical by taking into consideration of hardware limits, as well

as how to use parallel processing unit more efficiently. The hardware constraints come from two

aspects: on one hand, the number of parallel processing units is limited. It is not only from constraints

of hardware manufacturing, but also from the fact that the energy consumption increases dramatically

with increasing number of parallel processing units. On the other hand, load balance and scheduling are

important for parallel systems. Without careful tuning the software on hardware platforms, it is of high

probability that the hardware platform with more processing units performs worse than the one with

less processing units, considering more overhead of time on communications between processing units

introduced with more processing units. Our work addressed the issue to implement complicated control

algorithms while taking into consideration of hardware-software codesign, which is promising

direction to a complete and practical solution.

3. PSO and the RCDF model

3.1. PSO

Particle swarm optimization (PSO) is a population based stochastic optimization technique

developed by Eberhart and Kennedy in 1995 [7], inspired by social behavior of bird flocking or fish

schooling. PSO algorithm is especially useful for complicated non-linear optimization problems. In

PSO, the potential solutions, called particles, come from the problem space by following the current

optimum particles. PSO optimizes a problem by having a population of particles, and moving these

particles around in the search-space according to simple mathematical formulae over the particle’s

position and velocity. The advantages of PSO are that PSO is easy to implement and there are fewer

parameters to adjust. PSO has been successfully applied in many areas: function optimization, artificial

neural network training, fuzzy system control, etc. PSO is a good candidate as an optimization

technique to solve the constrained nonlinear optimization problem in a MPC model.

PSO is initialized with a group of random particles (solutions) and then searches for the optimal

objective value through calculation iterations. In every iteration, each particle is updated by following

two “best” values. The first one is the best solution this particle has achieved so far, which is a local

optimal value and is called lbest. Another “best” value which is tracked by the particle swarm

optimizer is the best value, obtained so far by all particles. This best value is a global optimal value and

is called gbest.

 After finding the two best values, the particle updates its velocity and positions with following

equation (1) and (2).

v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[]) (1)

present[] = persent[] + v[] (2)

where v[] is the particle velocity; persent[] is the current particle position (solution); pbest[] and gbest[]

are defined as stated before; rand() is a random number between (0,1); c1 and c2 are learning factors.

 In this paper, for nonlinear MPC systems, we applied the dynamic dataflow modeling technique,

called Reactive Control-integrated Dataflow (RCDF) [1] to PSO optimization. This approach is more

specialized than other dynamic dataflow techniques, but for PSO and other control algorithms, this

specialization can be exploited in useful ways to streamline the implementation process.

We need very little of the full RCDF formalism. It is mainly necessary to understand that for DSP-

oriented dataflow graphs, vertices (actors) represent computations of arbitrary complexity, and an edge

represents the flow of data as values are passed from the output of one computation to the input of

another. Each data value is encapsulated in an object called a token as it is passed across an edge.

Actors are assumed to execute iteratively, over and over again, as the graph processes data from one or

more data streams. These data streams are typically assumed to be of unbounded length (e.g., derived

implementations are not dependent on any predefined duration for the input signals). In dataflow

2

Efficient Implementation of Particle Swarm Optimization Algorithm
Ruirui Gu, Zhefu Shi

graphs, interfaces to input data streams are typically represented as source actors (actors that have no

input edges).

Figure 1. Dataflow Framework for efficient system implementation.

3.2. Applying RCDF model to PSO on a homogeneous multicore system

The dataflow framework provides a complete solution from system modeling to optimized

implementation, as shown in Figure 1. First of all, the control algorithm is modeled as a dataflow

model. After all the computation tasks are divided into different actors, we profile the execution time

of each actor to determine the bottleneck(s) of the system performance.

Figure 2. The RCDF model of the Particle Swarm Optimization implementation.

3.3. Dataflow model of PSO

In this paper, we applied the RCDF model to PSO algorithm, as shown in Figure 2. As an important

input to hardware-software design problem, the number of processing units is limited, and we assume

there are four processing units.

 The functionality of actors is described as follows:

G—The actor G is used to compute the objective function based on the given feed. G can be a super

actor since the computation inside this actor can be extended into a sub dataflow graph. The further

exploration is beyond the scope of this paper. The instance of this actor produces the result based on

the given seed as token and then sends it to the instance of actor C.

 C—The actor C is used to compare the results from different processing units in each iteration. The

instance of this actor is also responsible for sending seeds to available processing unit, as well as

sending the result to the instance of actor O, depending on stopping criterion and iteration number.

3

Efficient Implementation of Particle Swarm Optimization Algorithm
Ruirui Gu, Zhefu Shi

 O—The actor O is used to collect the result in the current subspace. Based on our dataflow-based

modeling approach, along with MATLAB implementations of the individual actors, we have

conducted MATLAB simulations to evaluate the contribution of each actor to the overall execution

time required for the application. We do not elaborate profiling phase due to limit of the paper size. In

this specific model, the computation time required from the instance of the actor G is much longer than

other actors. In other words, the actor G is dominant in terms of computation time. Given limited

number of processing units, we instantiate multiple instances of actor G in order to take advantage of

parallel systems. The instance of actor C and the instance of the actor O are put in the same processing

unit.

 The METC, as shown in Figure 2, consists of a set of edges with the destination of C. C consumes

only one token from one of the instances of the actor G at one time. The METP, as shown in Figure 2,

consists of a set of edges from the source of C. At one time, C produces only one token for either one

of the instances of the actor Gi or O1. The computation of Gi and O1 is relative light and can be

negligible when they are hosted in P4.

 Each instance of Gi is hosted in one processing unit. Once it finishes computing the result of the seed

for the current iteration k, it will send the result back to C1. Once C1 receives the result from the

instance Gi, e.g. G1, it knows that the processing unit P1 is available now. First it will check to see if

there is any seed untouched in the current iteration. If there is, C1 will send the next seed in the

sequence to P1. If no and if the maximum iteration is reached, C1 will send the final result to O1; if the

maximal iteration is not reached, C1 will start a new iteration k+1 and then send the first seed Slk+1 for

k+1 to P1. The methodology to choose Slk+1 is discussed in details in next section.

4. AGGRESSIVE FORWARDING CHECK

In this section, we propose the RCDF based aggressive forwarding check (RCDF-AFC) algorithm,

and describe the performance gain from the algorithm.

Figure 3. Workflow without RCDF-AFC: 4 seeds running on 4 CPUs.

4

Efficient Implementation of Particle Swarm Optimization Algorithm
Ruirui Gu, Zhefu Shi

We conduct our research on homogeneous multicore system, so the computation time of each CPU

on single seed is identical. Suppose we have X seeds in each iteration of PSO algorithm, and the

number of CPUs available is Y. Among these CPUs, one CPU is responsible for C1 in Figure 2, and the

remaining Y - 1 CPUs are responsible for the instances of G. In this paper, we assume Y - 1 < X, which

means the number of CPUs is limited and one iteration of feeds computation cannot be finished in one

CPU round.

 Fig. 3 shows the case that 4 seeds are running on 4 CPUs without RCDF-AFC. The CPU acting as

C1 is considered as monitoring the workflow and keeps the optimized value for the next iteration, and it

is not explicitly shown on Fig. 3.

Since the initial seed of the second iteration is determined by the best value of the results from all the

seeds in the first iteration, it requires 2 CPU rounds to finish the first iteration, although all other CPUs

will be idle when the fourth seed is using only one CPU in the second CPU round. As shown in Fig. 3,

two of three CPUs are always idle during the second round of each iteration.

Figure 4. Work flow with RCDF-AFC: 4 seeds running on 4 CPUs.

 We apply RCDF-AFC to the process, as shown in Fig. 4. The first CPU round in Fig. 4 is same as

Fig. 3. The difference starts from the second CPU round. The fourth seed, which is in the first PSO

iteration, delays to the second CPU round. Instead of letting the other CPUs be idle, the seeds from the

second PSO iteration are assigned to the remaining CPUs immediately. In this case, all CPUs are used

all the time, and there is no computation resources idle. But the problem arises by nature: How can we

decide the new seeds for second PSO iteration when the results from the first iteration has not

completed?

The procedure in current PSO iteration is: 1) each seed calculates the objective function using the

current parameter value in each seed; 2) once all seeds finish calculating objective function, the best

5

Efficient Implementation of Particle Swarm Optimization Algorithm
Ruirui Gu, Zhefu Shi

optimal value will be chose from the seeds, say seed A; 3) new seed will be generated based on the

current parameter value in seed A, and hence new velocity. In RCDF-AFC, we generate new seeds

based on available partial results from first iteration.

 To elaborate the procedure, we define a notation for a seed: S(l)
i;j;k, where i represents ith PSO iteration,

j stands for in jth seed, k is kth CPU round and l means that this seed is generated from the lth seed in the

previous PSO iteration. For the PSO seed in the first iteration, l = 0. Using same logic, define R(l)i;j;k as

the optimal value calculated from seed S(l)i;j;k.

 In the 1st CPU round, assume R(0)1;3;1 is the best value among R(0) 1;1;1, R(0) 1;2;1, and R(0) 1;3;1. We use

the S(0) 1;3;1 to generate the temporal seed for the 2nd PSO iteration. We define these seeds as “temporal

seeds” since the R(0) 1;3;1 is not determined to be the optimal value of first iteration before the result of

S(0) 1;4;1 is obtained in the second CPU round. In this example, there are 2 new temporal seeds generated

for the 2nd PSO iteration in the 2nd CPU round. Once the 2nd CPU round finished, seed S(0)1;4;2, S(3) 2;1;2,

and S(3) 2;2;2 all finished. Now comparing the value R(0) 1;3;1 and R(0)1;4;2. If the value of R(0)1;3;1 is

optimal, the values of R(3)2;1;2 and R(3)2;2;2 are already calculated in the 2nd CPU round. In this case, the

first two PSO iterations can be finished in totally 3 CPU rounds, and 1 CPU round is saved compared

with the case in Fig. 3.

Figure 5. Y CPUs workflow on X seeds without idle status

The parallel degree of the system is increased and hence the performance is improved. If the value of

R(0) 1;4;2 is optimal, then four new seeds for the 2nd PSO iteration, S(4) 2;1;3, S(4) 2;2;3, S(4) 2;3;3, and S(4)2;4;4

are generated. The temporal seeds S(3) 2;1;2 and S(3) 2;2;2 are discard. Then the same process is applied to

the 2nd PSO iteration and the 3rd CPU round in Fig. 5. We call this process as “Aggressive Forward

Check” (AFC) since the seeds of (n+1)th iteration are aggressively computed before the completion of

6

Efficient Implementation of Particle Swarm Optimization Algorithm
Ruirui Gu, Zhefu Shi

(n+1)th iteration. If the temporal seeds are demonstrated useful in the (n+1)th iteration, we call that

AFC wins in the (n+1)th iteration; otherwise, we call that AFC misses since the temporary seeds are

discarded.

Now we validate the performance gain of RCDF-AFC theoretically using probability in the decision

tree. We use mod(A;B) to represent an operator which divides number A by B and returns only the

remainder. For example, mod(4; 3) = 1.

We define Prbi as the probability AFC wins in the ith PSO iteration. Note that the optimal value is

uniformly generated among all the seed in one PSO iteration. Prb2 can be expressed as:

Prb2 = [X - mod(X;Y)]/X, (3)

Here we define Prb1 = 1, or TS1 = Y. In the example shown in Fig. 3, Prb2 = [4 – mod(4;3)]/4 = 3/4.

In another word, the probability of AFC wins in the 2nd iteration is as high as 75%, and the situation as

in Fig. 5 only occurs at a probability of 25%. From perspective of statistics, AFC wins with a higher

probability compared with AFC misses in this iteration.

We also define TSi as the number of temporal seeds generated for (i+1)th PSO iteration based on the

partial results from the ith PSO iteration. TS1 can be expressed as:

TS1 = Y - mod(X;Y). (4)

In the example shown in Fig. 3, TS1 = Y - mod(X;Y) = 2.

The dependency of Prbi on TSi-1, and the dependency of TSi on TSi-1 can be generalized as:

Prbi = [X - mod(X – Tsi-1;Y)]/X, (5)

TSi = Y - mod(X – Tsi-1;Y). (6)

 In Fig. 4, Prb3 = 0:5 and TS3 = 1. Generally, if Prbi = 1, or TSi = Y , it indicates that the system

situation is same as 1st PSO iteration, i.e, Prbi = Prb1, and TSi = TS1. Note in Fig. 6, the whole process

starts repeating from the 4th PSO iteration, which means Prb4 = 1, and TS4 = 3.

Figure 6. Probability analysis on AFC processing in PSO.

7

Efficient Implementation of Particle Swarm Optimization Algorithm
Ruirui Gu, Zhefu Shi

 Fig. 6 shows that all of the combination of AFC process success or misses among consecutive PSO

iteration. Path1 represents 3 consecutive successful AFC process. Path2 represents 2 consecutive

successful AFC process, followed by 2 consecutive failed AFC process. Path3 represents 2 consecutive

failed AFC process, followed by 2 consecutive successful AFC process. Path4 represents for 4

consecutive failed AFC process.

5. Simulation

 MPC has been studied at least since the 1970s. At that time various works showed an incipient

interest in MPC in the process industry [8][9]. The basic ideas appearing in MPC are explicit use of a

model to predict the process output at future time instants; calculation of a control sequence

minimizing a certain objective function; and the application of only the first control signal of the

sequence calculated at each step. A detailed introduction to MPC and some specific algorithms can be

found in the book [10].

The general structure of MPC is shown in Figure 7. The mathematical model is formulated based on

the actual system. Optimization problems are derived from the mathematical model, with explicit cost

function and constraints. The result from the optimization problem is the input to the actual system

again to obtain the next state and output. All the MPC algorithms possess common elements and

different options can be chosen for each element giving rise to different algorithms.

Figure 7. General Structure of Model Predictive Control.

 We conducted the simulation in Matlab. PSO is used for optimization, as shown in Figure 7. We use

a general unconstrained objective function to compare the performance of different optimization

method.

obj : ex1 _ (4 _ x21 + 2 _ x22 + 4 _ x1 _ x2 + 2 _ x2 + 1). (7)

Table 1. Simulation results

 With AFC Without AFC

 mean variance mean variance

Time 3.823585e-002 1.076474e-002 5.928038e-002 1.528491e-002

Value 1.718621e-013 2.524355e-029 3.660897e-015 0

8

Efficient Implementation of Particle Swarm Optimization Algorithm
Ruirui Gu, Zhefu Shi

From Table 1, we can conclude the accuracy between AFC and Quasi-Newton line search are almost

the same. But the calculation time can be saved up to 35%.

6. Conclusion and future work

We have demonstrated a set of tools for analyzing a nonlinear MPC algorithm using PSO

optimization, identifying bottlenecks, and suggesting ways to reduce the time needed for completing

computations. The main point is that given an algorithm that needs to run in real time (not necessarily

an MPC algorithm) to solve a class of problems, we need to explore the practical tools to improve the

performance.

 This paper especially explored hardware-software codesign using extended RCDF models. Although

parallel systems are being developed exclusively, how to fully exploit all the computation capability is

still an issue not only in high performance computing (HPC), but also in digital signal processing

(DSP), embedded systems, and implementation of complicated control algorithms. Simulation results

indicated that our work points to a good direction for a practical and efficient implementation.

We have not identified or exploited all the opportunities for parallelism in the algorithms we have

analyzed so far. For example, the actor G can be expanded into a sub dataflow group, and we can

explore more task level and data level parallelism inside the dataflow group.

 It would be desirable to provide both an optimized algorithm for a large class of optimization

problems and an efficient, reliable, and fast implementation of that algorithm. The result would be a

kind of plug and play MPC. To do this one would need a good set of test candidates for MPC control

and a reasonable collection of candidate algorithms. Our tools could then be applied to analyze the

algorithms, find ways to parallelize them, and develop special purpose hardware to implement them

efficiently and reliably. The resulting MPC controller, both linear and nonlinear, could greatly extend

the applications of MPC in the real world.

7. References

[1] R. Gu, S. S. Bhattacharyya, and W. S. Levine, “Methods for efficient implementation of model

predictive control on multiprocessor systems,” in Proceedings of the IEEE International

Conference onControl Applications, September 2010.

[2] Z. Shi, C. Beard, and K. Mitchell, “Competition, cooperation, and optimization in multi-hop csma

networks,” in Proceedings of the Eighth ACM International Symposium on Performance

Evaluation of Wireless Ad Hoc, Sensor, and Ubiquitous Networks (PE-WASUN 2011,October

2011.

[3] L. G. Bleris, J. Garcia, M. G. Arnold, and M. V. Kothare, “Towards embedded model predictive

control for system-on-a-chip applications,” Journal of Process Control, vol. 16, no. 3, March 2006.

[4] Y. W. J. Mattingley and S. Boyd, “Receding horizon control: Automatic generation of high-speed

solvers,” IEEE Control Systems Magazine, vol. 31, no. 3, June 2011.

[5] F. Manenti, G. Buzzi-Ferraris, I. Dones, and H. A. Preisig, “Generalized class for nonlinear model

predictive control based on bzzmath library,” in Chemical Engineering Transactions 17, 2009, pp.

1209–1214.

[6] M. R. Fahey, Highly Parallel Linpack on the IBM p690*. Oak Ridge National Laboratory

Technical Report, 2002.

[7] J. Kennedy and R.Eberhart, “Particle swarm optimization,” in Proceedings of Neural Networks,

November 1995, pp. 1942–1948.

[8] J. Richalet, A. Rault, J. L. Testud, and J. Papon, “Model predictive heuristic control: application to

industrial processes,” Automatica, vol. 14, no. 2, pp. 413–428, 1978.

[9] C. R. Cutler and B. Ramaker, “Dynamic matrix control—a computer control algorithm,” in

Proceedings of the Joint Automatic Control Conference, 1980.

[10] E. F. Camacho and C. Bordons, Model predictive control in the process industry. Springer, 1995.

9

Efficient Implementation of Particle Swarm Optimization Algorithm
Ruirui Gu, Zhefu Shi

