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Abstract 
Dataflow representations have been developing since the 1980’s. They have proven to be useful in 

identifying bottlenecks in DSP algorithms, improving the efficiency of the computations, and in 

designing appropriate hardware for implementing the algorithms. This paper extends and 

demonstrates the use of dataflow-based methodology, called as Reactive Control-integrated Dataflow 

based Aggressive Forwarding Check (RCDF-AFC), to implement a Particle Swarm Optimization (PSO) 

algorithm in hardware-software co-design. PSO has been extensively used in the real world but its 

application has been limited to relatively slow processes because it is computationally intensive. It is 

shown that the time required for the PSO computations using extensive iteration for solving the 

optimization problem can be reduced by means of dataflow based analysis and implementation 

improvements based on these analyses. 
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1. Introduction 
 

    Model Predictive Control (MPC) provides an elegant framework for higher accuracy. In previous 

research [1], we used dataflow techniques to improve the speed of MPC algorithms that utilize the 

Newton-KKT method or the active set method to solve for the control value. In this paper, we extend 

our work by applying similar but different dataflow techniques to improve the 

performance of another nonlinear control algorithm, particle swarm optimization (PSO), which can be 

used in the nonlinear MPC controllers [2].  

    The motivation to the work is based on two facts. One fact is although MPC has been applied to 

many practical problems, it is computationally intensive. Due to intensive computation takes a long 

time interval, MPC does not fit real time applications although it can provide more accurate results. 

The second fact is that hardware-software design makes it possible to efficient implement traditional 

algorithms in parallel hardware platforms, such as fast development of the homogeneous multi-core 

parallel processors. 

    As a result, there has been considerable research aimed at speeding up the computation of optimal 

controls for MPC. Most of this research has concentrated on improving the algorithms. Some work [3] 

has been devoted to improving the implementation of the algorithms. It is well known that an algorithm 

that can be executed with many parallel steps will be much faster if properly implemented than a more 

efficient algorithm that must operate sequentially. However it is not practical to assume availability of 

unlimited parallel processing units. 

    The paper is organized as follows. We generalize the related work in the next section. We describe 

the dataflow framework to be applied to PSO in the following section. We then elaborate the method of 

Reactive Control-integrated Dataflow based Aggressive Forwarding Check (RCDF-AFC), which can 

be used to improve the MPC system performance. Finally, we conduct the simulation in Matlab and 

compare the results with the function provided by Matlab library. 

 

2. Related work 
 

    Some related work in both controls and computer engineering was summarized in our earlier papers 

[1][2]. In this section, we focus on efficient implementation of computational intensive algorithms on 

parallel systems. 

    There are already some works on implementation of complicated control systems, such as MPC. [4] 

proposed a generic solver to specify Receding Horizon Control (RHC) policy using Matlab. [5] 

proposed a generalized C++ class to solve nonlinear MPC and dynamic optimization problems 
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using BzzMath Library. However, none of the work above has exploited the usage of parallel systems 

explicitly. 

    There are also some works to introduce parallel implementation into modern control fields. One 

example is parallel version of Linpack [6]. Our previous work also started the exploration. However, 

there is little work on how to make it practical by taking into consideration of hardware limits, as well 

as how to use parallel processing unit more efficiently. The hardware constraints come from two 

aspects: on one hand, the number of parallel processing units is limited. It is not only from constraints 

of hardware manufacturing, but also from the fact that the energy consumption increases dramatically 

with increasing number of parallel processing units. On the other hand, load balance and scheduling are 

important for parallel systems. Without careful tuning the software on hardware platforms, it is of high 

probability that the hardware platform with more processing units performs worse than the one with 

less processing units, considering more overhead of time on communications between processing units 

introduced with more processing units. Our work addressed the issue to implement complicated control 

algorithms while taking into consideration of hardware-software codesign, which is promising 

direction to a complete and practical solution. 

 

3. PSO and the RCDF model 
 

3.1. PSO 
 

Particle swarm optimization (PSO) is a population based stochastic optimization technique 

developed by Eberhart and Kennedy in 1995 [7], inspired by social behavior of bird flocking or fish 

schooling. PSO algorithm is especially useful for complicated non-linear optimization problems. In 

PSO, the potential solutions, called particles, come from the problem space by following the current 

optimum particles. PSO optimizes a problem by having a population of particles, and moving these 

particles around in the search-space according to simple mathematical formulae over the particle’s 

position and velocity. The advantages of PSO are that PSO is easy to implement and there are fewer 

parameters to adjust. PSO has been successfully applied in many areas: function optimization, artificial 

neural network training, fuzzy system control, etc. PSO is a good candidate as an optimization 

technique to solve the constrained nonlinear optimization problem in a MPC model. 

PSO is initialized with a group of random particles (solutions) and then searches for the optimal 

objective value through calculation iterations. In every iteration, each particle is updated by following 

two “best” values. The first one is the best solution this particle has achieved so far, which is a local 

optimal value and is called lbest. Another “best” value which is tracked by the particle swarm 

optimizer is the best value, obtained so far by all particles. This best value is a global optimal value and 

is called gbest. 

    After finding the two best values, the particle updates its velocity and positions with following 

equation (1) and (2). 

 

v[] = v[] + c1 * rand() * (pbest[] - present[]) + c2 * rand() * (gbest[] - present[])     (1) 

present[] = persent[] + v[]           (2) 

 

where v[] is the particle velocity; persent[] is the current particle position (solution); pbest[] and gbest[] 

are defined as stated before; rand() is a random number between (0,1); c1 and c2 are learning factors. 

    In this paper, for nonlinear MPC systems, we applied the dynamic dataflow modeling technique, 

called Reactive Control-integrated Dataflow (RCDF) [1] to PSO optimization. This approach is more 

specialized than other dynamic dataflow techniques, but for PSO and other control algorithms, this 

specialization can be exploited in useful ways to streamline the implementation process. 

We need very little of the full RCDF formalism. It is mainly necessary to understand that for DSP-

oriented dataflow graphs, vertices (actors) represent computations of arbitrary complexity, and an edge 

represents the flow of data as values are passed from the output of one computation to the input of 

another. Each data value is encapsulated in an object called a token as it is passed across an edge. 

Actors are assumed to execute iteratively, over and over again, as the graph processes data from one or 

more data streams. These data streams are typically assumed to be of unbounded length (e.g., derived 

implementations are not dependent on any predefined duration for the input signals). In dataflow 
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graphs, interfaces to input data streams are typically represented as source actors (actors that have no 

input edges). 

 

 

Figure 1. Dataflow Framework for efficient system implementation. 

 

3.2. Applying RCDF model to PSO on a homogeneous multicore system 
 

The dataflow framework provides a complete solution from system modeling to optimized 

implementation, as shown in Figure 1. First of all, the control algorithm is modeled as a dataflow 

model. After all the computation tasks are divided into different actors, we profile the execution time 

of each actor to determine the bottleneck(s) of the system performance. 

 

 

Figure 2. The RCDF model of the Particle Swarm Optimization implementation. 

 

3.3. Dataflow model of PSO 
     

In this paper, we applied the RCDF model to PSO algorithm, as shown in Figure 2. As an important 

input to hardware-software design problem, the number of processing units is limited, and we assume 

there are four processing units. 

    The functionality of actors is described as follows: 

G—The actor G is used to compute the objective function based on the given feed. G can be a super 

actor since the computation inside this actor can be extended into a sub dataflow graph. The further 

exploration is beyond the scope of this paper. The instance of this actor produces the result based on 

the given seed as token and then sends it to the instance of actor C. 

    C—The actor C is used to compare the results from different processing units in each iteration. The 

instance of this actor is also responsible for sending seeds to available processing unit, as well as 

sending the result to the instance of actor O, depending on stopping criterion and iteration number.  
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    O—The actor O is used to collect the result in the current subspace. Based on our dataflow-based 

modeling approach, along with MATLAB implementations of the individual actors, we have 

conducted MATLAB simulations to evaluate the contribution of each actor to the overall execution 

time required for the application. We do not elaborate profiling phase due to limit of the paper size. In 

this specific model, the computation time required from the instance of the actor G is much longer than 

other actors. In other words, the actor G is dominant in terms of computation time. Given limited 

number of processing units, we instantiate multiple instances of actor G in order to take advantage of 

parallel systems. The instance of actor C and the instance of the actor O are put in the same processing 

unit. 

    The METC, as shown in Figure 2, consists of a set of edges with the destination of C. C consumes 

only one token from one of the instances of the actor G at one time. The METP, as shown in Figure 2, 

consists of a set of edges from the source of C. At one time, C produces only one token for either one 

of the instances of the actor Gi or O1. The computation of Gi and O1 is relative light and can be 

negligible when they are hosted in P4. 

    Each instance of Gi is hosted in one processing unit. Once it finishes computing the result of the seed 

for the current iteration k, it will send the result back to C1. Once C1 receives the result from the 

instance Gi, e.g. G1, it knows that the processing unit P1 is available now. First it will check to see if 

there is any seed untouched in the current iteration. If there is, C1 will send the next seed in the 

sequence to P1. If no and if the maximum iteration is reached, C1 will send the final result to O1; if the 

maximal iteration is not reached, C1 will start a new iteration k+1 and then send the first seed Slk+1 for 

k+1 to P1. The methodology to choose Slk+1 is discussed in details in next section. 
 

4. AGGRESSIVE FORWARDING CHECK 
 

In this section, we propose the RCDF based aggressive forwarding check (RCDF-AFC) algorithm, 

and describe the performance gain from the algorithm.  

 

 

Figure 3. Workflow without RCDF-AFC: 4 seeds running on 4 CPUs. 
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We conduct our research on homogeneous multicore system, so the computation time of each CPU 

on single seed is identical. Suppose we have X seeds in each iteration of PSO algorithm, and the 

number of CPUs available is Y. Among these CPUs, one CPU is responsible for C1 in Figure 2, and the 

remaining Y - 1 CPUs are responsible for the instances of G. In this paper, we assume Y - 1 < X, which 

means the number of CPUs is limited and one iteration of feeds computation cannot be finished in one 

CPU round. 

    Fig. 3 shows the case that 4 seeds are running on 4 CPUs without RCDF-AFC. The CPU acting as 

C1 is considered as monitoring the workflow and keeps the optimized value for the next iteration, and it 

is not explicitly shown on Fig. 3. 

Since the initial seed of the second iteration is determined by the best value of the results from all the 

seeds in the first iteration, it requires 2 CPU rounds to finish the first iteration, although all other CPUs 

will be idle when the fourth seed is using only one CPU in the second CPU round. As shown in Fig. 3, 

two of three CPUs are always idle during the second round of each iteration. 

 

 

 

Figure 4. Work flow with RCDF-AFC: 4 seeds running on 4 CPUs. 

 

    We apply RCDF-AFC to the process, as shown in Fig. 4. The first CPU round in Fig. 4 is same as 

Fig. 3. The difference starts from the second CPU round. The fourth seed, which is in the first PSO 

iteration, delays to the second CPU round. Instead of letting the other CPUs be idle, the seeds from the 

second PSO iteration are assigned to the remaining CPUs immediately. In this case, all CPUs are used 

all the time, and there is no computation resources idle. But the problem arises by nature: How can we 

decide the new seeds for second PSO iteration when the results from the first iteration has not 

completed? 

The procedure in current PSO iteration is: 1) each seed calculates the objective function using the 

current parameter value in each seed; 2) once all seeds finish calculating objective function, the best 
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optimal value will be chose from the seeds, say seed A; 3) new seed will be generated based on the 

current parameter value in seed A, and hence new velocity. In RCDF-AFC, we generate new seeds 

based on available partial results from first iteration. 

    To elaborate the procedure, we define a notation for a seed: S(l)
i;j;k, where i represents ith PSO iteration, 

j stands for in jth seed, k is kth CPU round and l means that this seed is generated from the lth seed in the 

previous PSO iteration. For the PSO seed in the first iteration, l = 0. Using same logic, define R(l)i;j;k as 

the optimal value calculated from seed S(l)i;j;k. 

    In the 1st CPU round, assume R(0)1;3;1 is the best value among R(0) 1;1;1, R(0) 1;2;1, and R(0) 1;3;1. We use 

the S(0) 1;3;1 to generate the temporal seed for the 2nd PSO iteration. We define these seeds as “temporal 

seeds” since the R(0) 1;3;1 is not determined to be the optimal value of first iteration before the result of 

S(0) 1;4;1 is obtained in the second CPU round. In this example, there are 2 new temporal seeds generated 

for the 2nd PSO iteration in the 2nd CPU round. Once the 2nd CPU round finished, seed S(0)1;4;2, S(3) 2;1;2, 

and S(3) 2;2;2 all finished. Now comparing the value R(0) 1;3;1 and R(0)1;4;2. If the value of R(0)1;3;1 is 

optimal, the values of R(3)2;1;2 and R(3)2;2;2 are already calculated in the 2nd CPU round. In this case, the 

first two PSO iterations can be finished in totally 3 CPU rounds, and 1 CPU round is saved compared 

with the case in Fig. 3. 

 

 
 

Figure 5. Y CPUs workflow on X seeds without idle status 

 

The parallel degree of the system is increased and hence the performance is improved. If the value of 

R(0) 1;4;2 is optimal, then four new seeds for the 2nd PSO iteration, S(4) 2;1;3, S(4) 2;2;3, S(4) 2;3;3, and S(4)2;4;4 

are generated. The temporal seeds S(3) 2;1;2 and S(3) 2;2;2 are discard. Then the same process is applied to 

the 2nd PSO iteration and the 3rd CPU round in Fig. 5. We call this process as “Aggressive Forward 

Check” (AFC) since the seeds of (n+1)th iteration are aggressively computed before the completion of 
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(n+1)th iteration. If the temporal seeds are demonstrated useful in the (n+1)th iteration, we call that 

AFC wins in the (n+1)th iteration; otherwise, we call that AFC misses since the temporary seeds are 

discarded. 

Now we validate the performance gain of RCDF-AFC theoretically using probability in the decision 

tree. We use mod(A;B) to represent an operator which divides number A by B and returns only the 

remainder. For example, mod(4; 3) = 1. 

We define Prbi as the probability AFC wins in the ith PSO iteration. Note that the optimal value is 

uniformly generated among all the seed in one PSO iteration. Prb2 can be expressed as: 

 

Prb2 = [X  - mod(X;Y)]/X,          (3) 

 

Here we define Prb1 = 1, or TS1 = Y. In the example shown in Fig. 3, Prb2 = [4 – mod(4;3)]/4 = 3/4. 

In another word, the probability of AFC wins in the 2nd iteration is as high as 75%, and the situation as 

in Fig. 5 only occurs at a probability of 25%. From perspective of statistics, AFC wins with a higher 

probability compared with AFC misses in this iteration. 

We also define TSi as the number of temporal seeds generated for (i+1)th PSO iteration based on the 

partial results from the ith PSO iteration. TS1 can be expressed as: 

 

TS1 = Y - mod(X;Y).       (4) 

 

In the example shown in Fig. 3, TS1 = Y - mod(X;Y) = 2. 

The dependency of Prbi on TSi-1, and the dependency of TSi on TSi-1 can be generalized as: 

 

Prbi = [X - mod(X – Tsi-1;Y)]/X,      (5) 
 

 

TSi = Y - mod(X – Tsi-1;Y).       (6) 

 

    In Fig. 4, Prb3 = 0:5 and TS3 = 1. Generally, if Prbi = 1, or TSi = Y , it indicates that the system 

situation is same as 1st PSO iteration, i.e, Prbi = Prb1, and TSi = TS1. Note in Fig. 6, the whole process 

starts repeating from the 4th PSO iteration, which means Prb4 = 1, and TS4 = 3. 

 

 

 

Figure 6. Probability analysis on AFC processing in PSO. 
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    Fig. 6 shows that all of the combination of AFC process success or misses among consecutive PSO 

iteration. Path1 represents 3 consecutive successful AFC process. Path2 represents 2 consecutive 

successful AFC process, followed by 2 consecutive failed AFC process. Path3 represents 2 consecutive 

failed AFC process, followed by 2 consecutive successful AFC process. Path4 represents for 4 

consecutive failed AFC process. 

 

5. Simulation 
 

    MPC has been studied at least since the 1970s. At that time various works showed an incipient 

interest in MPC in the process industry [8][9]. The basic ideas appearing in MPC are explicit use of a 

model to predict the process output at future time instants; calculation of a control sequence 

minimizing a certain objective function; and the application of only the first control signal of the 

sequence calculated at each step. A detailed introduction to MPC and some specific algorithms can be 

found in the book [10]. 

The general structure of MPC is shown in Figure 7. The mathematical model is formulated based on 

the actual system. Optimization problems are derived from the mathematical model, with explicit cost 

function and constraints. The result from the optimization problem is the input to the actual system 

again to obtain the next state and output. All the MPC algorithms possess common elements and 

different options can be chosen for each element giving rise to different algorithms. 

 

 
 

Figure 7. General Structure of Model Predictive Control.  

 

    We conducted the simulation in Matlab. PSO is used for optimization, as shown in Figure 7. We use 

a general unconstrained objective function to compare the performance of different optimization 

method. 

obj : ex1 _ (4 _ x21 + 2 _ x22 + 4 _ x1 _ x2 + 2 _ x2 + 1).    (7) 

 

Table 1. Simulation results 

 With AFC Without AFC 

 mean variance mean variance 

Time 3.823585e-002  1.076474e-002  5.928038e-002  1.528491e-002 

Value 1.718621e-013  2.524355e-029  3.660897e-015  0 
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From Table 1, we can conclude the accuracy between AFC and Quasi-Newton line search are almost 

the same. But the calculation time can be saved up to 35%. 

 

6. Conclusion and future work 
 

We have demonstrated a set of tools for analyzing a nonlinear MPC algorithm using PSO 

optimization, identifying bottlenecks, and suggesting ways to reduce the time needed for completing 

computations. The main point is that given an algorithm that needs to run in real time (not necessarily 

an MPC algorithm) to solve a class of problems, we need to explore the practical tools to improve the 

performance. 

    This paper especially explored hardware-software codesign using extended RCDF models. Although 

parallel systems are being developed exclusively, how to fully exploit all the computation capability is 

still an issue not only in high performance computing (HPC), but also in digital signal processing 

(DSP), embedded systems, and implementation of complicated control algorithms. Simulation results 

indicated that our work points to a good direction for a practical and efficient implementation. 

We have not identified or exploited all the opportunities for parallelism in the algorithms we have 

analyzed so far. For example, the actor G can be expanded into a sub dataflow group, and we can 

explore more task level and data level parallelism inside the dataflow group. 

    It would be desirable to provide both an optimized algorithm for a large class of optimization 

problems and an efficient, reliable, and fast implementation of that algorithm. The result would be a 

kind of plug and play MPC. To do this one would need a good set of test candidates for MPC control 

and a reasonable collection of candidate algorithms. Our tools could then be applied to analyze the 

algorithms, find ways to parallelize them, and develop special purpose hardware to implement them 

efficiently and reliably. The resulting MPC controller, both linear and nonlinear, could greatly extend 

the applications of MPC in the real world. 
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